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Abstract. Let G be the F -points of a classical group defined over a p-adic

field F of characteristic 0. We classify the irreducible unitarizable representa-
tion of G that are subquotients of the parabolic induction of cuspidal repre-

sentations of Levi subgroup of corank at most 3 in G.
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CHAPTER 1

Introduction

One of the fundamental questions in harmonic analysis is the classification of
the unitary dual of a locally compact group. An important class of locally compact
groups is the F -points of reductive groups over a local field F . We will only consider
p-adic groups in this paper. The history of this problem goes back at least to [15]
and [16].1

The classification of the unitary dual for general linear groups in the p-adic
case was solved in [55]. (The archimedean case can be solved along the same lines
– see [54] and [64].) An important input is Bernstein’s result [10] on irreducibility
of unitary parabolic induction. Subsequently, the classification of the unitary dual
of inner forms of the general linear group was obtained ([4] and [48]; see also [57]).
A unified and simplified proof was recently discovered by E. Lapid and A. Mı́nguez
[29] (see also [5]). Their point of departure is the reducibility points for parabolic
induction of cuspidal representations of general linear groups, which in the split
case are always ±1. This also gives a uniform and simplified approach for the
classification of the admissible dual (see [29, Appendix] and [69]).

Little is known in general about the classification of the unitary dual in case of
(other) classical groups, except for some important subclasses of unitary represen-
tations, such as generic representation [30] or spherical representations [42].

A natural question is whether one can attack the unitarizability problem for
the classical groups using the cuspidal reducibility points as the starting point (as
is the case for the general linear groups). Such an approach was proposed in [70].
The main goal of this paper is carry out this approach in the corank (at most)
3 case, namely to classify, irreducible unitarizable subquotients of representations
IndGP (τ), where G is a classical group over a p-adic field of characteristic zero, P is
a parabolic subgroup of G of corank (at most) 3 and τ is an irreducible cuspidal
representation of a Levi factor M of P .

The first order of business is to understand cuspidal reducibility for classical
groups. This was done by C. Mœglin in terms of the local Langlands correspon-
dence, which is a consequence of Arthur’s endoscopic classification ([1], which relies
on [40] and [41] among other things). The bottom line is that the points of cuspidal
reducibilities are half-integers

0,± 1
2 , 1,±

3
2 ,±2, . . . .

(All half-integers can occur.) This is considerably more complicated than in the
case of general linear groups (and their inner forms) where there is a single cuspidal
reducibility point (up to ±).

1Note that these papers were published well before [34], which is usually considered the
beginning of the representation theory of reductive p-adic groups.
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2 1. INTRODUCTION

Another important difference is that the parabolic induction of irreducible uni-
tarizable representations is not irreducible in general.

For any reductive p-adic group G, denote by G̃ the set of all equivalence classes
of its irreducible smooth representations (the admissible dual of G) and by Ĝ the
subset of the unitarizable classes (the unitary dual of G). The unitarizability prob-

lem is the determination of the subset Ĝ of G̃. It breaks down naturally into two
parts: construction and exhaustion. The exhaustion is usually achieved by show-
ing that all the classes in G̃ other than the ones constructed in the first step are
non-unitarizable. We may call such an approach to the exhaustion “a proof by
elimination”.

In the construction of the representations of Ĝ, arguably the hardest part is
the construction of representations that are isolated in the natural topology of Ĝ.
(Explicating the reducibility of unitary parabolic induction and the complementary
series are other difficult problems.) Our expectation is that at least for split classi-
cal p-adic groups, all isolated representations are of Arthur type (and consequently,
they occur as local constituents of automorphic representations in the discrete spec-
trum). This is known to be the case for spherical representations by [42]. Here,
Mœglin’s results on the structure of Arthur packets provide a powerful tool for the
construction of isolated representations.

Regarding exhaustion, proof by elimination (which is used in this paper) is un-
feasible in the higher rank case (as this paper clearly indicates for rank 3). Namely,

it requires a very detailed knowledge of the structure of the representations in G̃\Ĝ.

Thus, especially in higher rank (where G̃\Ĝ is much larger than Ĝ) we are spending
most of our effort on the “wrong” class of representations.

Unfortunately, the prospect of finding a direct approach to the exhaustion
problem for classical groups does not seem to be on the horizon at the moment.
In fact, so far, the only successful direct approach to the exhaustion problem for
reductive groups in higher rank seems to be that of [55], [54] for the case of general
linear groups (see also [64] and [58]). The statement (if not the proof) of the
classification of the unitary dual in this case is rather simple (see Theorem 2.14
below).2 This was arguably surprising at the time, although it should be noted
that the first lists of candidates for the unitary duals of the closely related groups
SL(n,C), which go back to 1947 in [15], albeit incomplete, were very simple (and
not far from the actual unitary duals). It took almost four decades to get a direct
approach to the exhaustion in the case of general linear groups (thereby fulfilling
the vision of I. M. Gelfand and M. A. Naimark).

Although this paper is about unitarizability, most of it deals with non-uni-
tarizability because of the exhaustion proof by elimination. A very small part
of the admissible dual is unitarizable, and its unitarizability, excluding only the
representations (1.2), is very natural to expect (and not too hard to prove). In
the analysis of the non-unitarizability of representations, the most delicate ones are
those whose GL-support is contained in a segment of cuspidal representations which

2There is also D. Vogan’s classification of unitary duals of GL(n,C),GL(n,R) and GL(n,H)

(Theorem 6.18 of [71]). One can find at the end of the seventh section of [3] remarks about

relation between our approach and that of Vogan. We shall quote here only a part which indicates
the main difference between these two approaches: “Vogan’s classification is conceptually very

different from Tadić’s classification. It has its own merits, but the final result is quite difficult to

state and to understand, since it uses sophisticated concepts and techniques of the theory of real
reductive groups.”
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contains the reducibility point, and which are not fully induced (non-unitarizability
of the other representations is obtained by deformation to these representations or
reducing to the non-unitarizability in the case of general linear groups). In §4 we
settle the non-unitarizability in the most delicate cases, save for a few exceptions.
The remaining five cases are dealt with separately in §5,6.

In order to show non-unitarizability of π in the most delicate case we consider
the parabolic induction Π of π tensored with a suitable irreducible unitarizable
representation τ of a general linear group. We show that the length ` of Π is larger
than the multiplicity m of τ ⊗ π in the Jacquet module of Π. This implies that Π
cannot be semisimple, let alone unitarizable. Hence, π cannot be unitarizable. (In
one case, we will also use the fact that if Π is semisimple and ` is equal to m, then
each copy of τ ⊗ π must occur as a direct summand in the Jacquet module of Π.)

We already noted that in the construction of new irreducible unitarizable rep-
resentations, the most difficult cases are the isolated representations. The simplest
examples of representations that are often (though not always) isolated in the uni-
tary dual are the square-integrable ones (whose unitarizability is obvious) and their
dual representations (whose unitarizability is not obvious, except for the trivial rep-
resentation which is isolated by [25] if the split rank of the simple group is not one).
In the case of p-adic general linear groups, the first case of an isolated representation
(modulo the center) not of this type is for GL(9).3 In the case of classical groups,
such examples first occur in corank 3, when the reducibility point is > 1. These are
the representations (1.2) below whose unitarizability was proved by Mœglin. (The
smallest group which accommodates such a representation is the split SO(11, F ).)

We shall now briefly describe some parts of the strategy in [70] proposed to
handle the unitarizability problem in the case of classical p-adic groups. We first
note that it is easy to reduce to the case of representations supported on real twists
of selfcontragredient irreducible cuspidal representations of general linear groups
and irreducible cuspidal representations of classical groups (see §2.16 for more de-
tails).4 Because of this, we shall consider in the sequel only such representations,
which we call weakly real representations.

Jantzen decomposition attaches to an irreducible (weakly real) representation
π, irreducible representations supported on single cuspidal lines

π → (π1, . . . , πk)

(see [24] or [70, §8] for more details). In chapter 9 we conjecture that this decom-
position preserves unitarizability in both directions, i.e., that π is unitarizable if
and only if all πi are unitarizable. (See [70] for some very limited support for this
conjecture.) If true, this would reduce the general case to unitarizability pertaining
to the cases of a single cuspidal lines (and single cuspidal reducibilities).

Consider now an irreducible representation π of a classical group that is sup-
ported on a cuspidal line Xρ along a selfcontragredient irreducible cuspidal repre-
sentation ρ of a general linear group, and an irreducible cuspidal representation σ
of a classical group. To the pair ρ, σ corresponds a unique non-negative reducibility
exponent αρ,σ ∈ 1

2Z. The next question is whether the unitarizability of π can be
described in terms of the reducibility exponent αρ,σ alone. (See [70] for a precise

3In general, these representations are u(δ(ρ,m), n) where m,n > 2 – see below for notation.
4In the case of unitary groups we need to consider F ′/F -contragredients, whose definition is

recalled in the second chapter of the paper. For simplicity, in the introduction we only consider

symplectic and orthogonal groups.
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formulation.) If true, the unitarizability problem for classical p-adic groups would
amount to the determination of a certain (complicated) combinatorial data.

We shall below use standard Bernstein-Zelevinsky notation × for parabolic
induction in the setting of general linear groups, and its natural extension o to the
setting of classical groups (see §2 for details). By | |F is denoted the normalized
absolute value on F , and by ν the character g 7→ |det(g)F | of GL(n, F ).

The main goal of this paper is to classify, following the above proposed strategy,
the irreducible unitarizable (weakly real) subquotients of the representations

(1.1) θ1 × · · · × θk o σ, k ≤ 3,

where θi, 1 ≤ i ≤ k, and σ are irreducible cuspidal representations of general linear
groups and of a classical group respectively. In particular, we completely classify
the unitary dual of classical p-adic groups of the split rank (at most) three. This
gives some very limited support for the possibility of the above approach to the
unitarizability to work in general.

In the last chapter of the paper we prove that the Jantzen decomposition pre-
serves unitarizability in both directions for the cases that we consider in this paper.
More precisely, we prove the following

Proposition 1.1. Let π be a weakly real irreducible subquotient of θ1 × · · · ×
θkoσ, where θi are irreducible cuspidal representations of general linear groups and
k ≤ 3. Then, π is unitarizable if and only if all πi in the Jantzen decomposition of
π are unitarizable.

For a general connected reductive group G over F there is a natural involution
π 7→ DG(π) established in [2] and [47], which carries an irreducible representations
of G to an irreducible representation of G, up to a sign. It is modeled after Deligne–
Lusztig duality (in the context of groups over finite fields) and will be henceforth
referred to as DL involution, or duality5 (see also [9]). Take επ ∈ {±1} such that
επDG(π) is a representation. We denote then επDG(π) by πt and call it the DL
involution of π.

Now we shall describe unitarizability in the case of corank up to three. We
shall express the classification of irreducible subquotients in the shortest way.

By Proposition 1.1, it is enough to consider representations supported a on
single cuspidal line. It means that we fix an irreducible selfcontragredient cuspidal
representation ρ of a general linear group and an irreducible cuspidal representation
σ of classical group. Then, there exist a unique non-negative αρ,σ ∈ 1

2Z such that

ναρ,σρo σ

is reducible. Then, to simplify notation, we denote

α := αρ,σ.

Suppose that α > 0. Let k be a non-negative integer. Define the generalized
Steinberg representation

δ([α, α+ k](ρ);σ) = soc(νk+αρ× νk−1+αρ× · · · × ναρo σ)

where soc is the socle. These representations are irreducible and square-integrable.
(For k = 0 we simply write δ([α](ρ);σ).)

5This involution is also called Zelevinsky involution, or Aubert involution, or Aubert-
Schneider-Stuhler involution.



1. INTRODUCTION 5

Denote
Rk++ = {(x1, . . . , kk) ∈ Rk; 0 ≤ x1 ≤ · · · ≤ xk}.

It is well-known that for each representation π := νx1ρ × · · · × νxkρ o σ, xi ∈ R,
there exists (x′1, . . . , x

′
k) ∈ Rk++ such that π and νx

′
1ρ × · · · × νx′kρ o σ have the

same composition series. Now we describe irreducible unitarizable subquotients of
representationsn(1.1). For k = 1 the answer is:

Remark 1.2. Unitarizability in the corank 1 is very simply to describe: an
irreducible subquotient π of νxρo σ, x ∈ R≥0, is unitarizable ⇐⇒ x ≤ α.

The following answer to the unitarizability problem in the corank 2 is more or
less already well known (although we were unable to find a complete reference in
the literature).

Proposition 1.3. The irreducible unitarizable subquotients of νx1ρ×νx1ρoσ,
(x1, x2) ∈ R2

++, are the following.

(1) (α > 1) All irreducible subquotients when x1 + 1 ≤ x2 ≤ α.
(2) (α 6= 1

2 ) All irreducible subquotients when x1 + x2 ≤ 1.

(3) (α = 1
2 ) All irreducible subquotients when x2 ≤ 1

2 .
(4) (α > 0) The representations δ([α, α+ 1];σ) and δ([α, α+ 1];σ)t.

For the answer of unitarizability for corank 3 we need additional notation.
Suppose α > 1. Denote by

(1.2) L([α](ρ), [α− 1](ρ); δ([α](ρ);σ))

the Langlands quotient of ναρ×να−1ρo δ([α](ρ);σ). (This representation is invari-
ant under the DL involution.)

For any positive integer n, the representation

δ(ρ, n) = soc(ν
n−1
2 ρ× ν

n−3
2 ρ× · · · × ν−

n−1
2 ρ)

is irreducible and square-integrable modulo center.
For α = 1

2 , the representation δ(ρ, 2)oσ contains a unique irreducible subquo-

tient which is not a subquotient of [ 1
2 ](ρ) o δ([ 1

2 ](ρ);σ). We denote it by

δ([− 1
2 ,

1
2 ]

(ρ)
− ;σ).

Let α = 0. For any positive integer k, the representation ν
k
2 δ(ρ, k + 1) o σ has

precisely two irreducible subrepresentations, and they are both square-integrable.
We denote them by

δ([0, k]
(ρ)
+ ;σ) and δ([0, k]

(ρ)
− ;σ).

The unitarizability statement for corank 3, which is the main result of the
paper, is the following

Theorem 1.4. The irreducible unitarizable subquotients of νx1ρ×νx2ρ×νx3ρo
σ where (x1, x2, x3) ∈ R3

++ are the following.

(1) (α ≥ 1) All irreducible subquotients when x = (x1, x2, x3) lies in the
closure of one of the domains

x2 + x3 < 1,

x1 + x2 < 1, x3 − x2 > 1, x3 < α, (α > 1),

x1 + x2 < 1, x1 + x3 > 1, x3 − x1 < 1, x3 < α,

x2 − x1 > 1, x3 − x2 > 1, x3 < α, (α > 2).
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(2) (α = 1
2 ) All irreducible subquotients when x3 ≤ 1

2 .
(3) (α = 0) All irreducible subquotients when x1 = 0, x2 + x3 ≤ 1.
(4) (α > 0) The representations δ([α, α+ 2];σ) and δ([α, α+ 2];σ)t.
(5) (α = 0) The representations δ([0, 2]±;σ) and δ([0, 2]±;σ)t.
(6) (α > 0) The complementary series [x]o δ([α, α+ 1];σ) and [x]o δ([α, α+

1];σ)t for 0 ≤ x < |α− 1| (if α 6= 1) and its irreducible subquotients for
x = α− 1.

(7) (α = 0) The complementary series (including subquotients at the ends)

[x] o δ([0, 1]±;σ), [x] o δ([0, 1]±;σ)t, 0 ≤ x ≤ 1

(8) (α > 1) The representation L([α− 1], [α]; δ([α];σ)).
(9) (α = 1

2 ) The complementary series (including subquotients at the ends)

νxδ(ρ, 2) o δ([ 1
2 ];σ), νxδ(ρ, 2)t o δ([ 1

2 ];σ)t, 0 ≤ x ≤ 1

νxρo δ([− 1
2 ,

1
2 ]−;σ), νxρo δ([− 1

2 ,
1
2 ]−;σ)t, 0 ≤ x ≤ 3

2

νxδ(ρ, 3) o σ, νxδ(ρ, 3)t o σ, 0 ≤ x ≤ 1
2 .

Note that Theorem 1.4 directly implies that the DL involution preserves uni-
tarizability in the cases at hand, a fact that is expected to hold in general (see [53]
and [6] for some steps in that direction). Theorem 1.4 also implies that all isolated
representations are automorphic. (In §8.7 we conjecture this to hold in general.)

Furthermore, note that in the above classifications only the reducibility point α
plays a role in determining the exponents of the representations that are unitarizable
(not ρ and σ themselves).

The motivation for writing this paper came from a discussion with C. Mœglin
at the Simons Symposium on Geometric Aspects of the Trace Formula in Schloss
Elmau in Germany (2016). The paper [29] of E. Lapid and A. Mı́nguez was also
a strong motivation for us to try to understand unitarizability based only on the
reducibility points between irreducible cuspidal representations, at least at corank
3. Some of the results of this paper were presented in a minicourse at the Special
Trimester on Representation Theory of Reductive Groups Over Local Fields and
Applications to Automorphic forms, which was held at the Weizmann Institute
in spring 2017. We are thankful to the Simons Foundation and the Weizmann
Institute. Discussions with M. Hanzer, I. Matić and A. Moy were helpful during
the writing of this paper.

Especially we would like to thank C. Mœglin and E. Lapid. C. Mœglin wrote
the appendix with the proof that the representation (1.2) is in an Arthur packet,
which proves the unitarizability of that representation. Thanks to E. Lapid and his
huge help, this paper is much easier to understand. In particular, he helped us to
change the organization of the paper, and considerably simplified the exhaustion
part by adding a geometric argument. The final work on this paper took place at
Weizmann Institute in winter 2020, and we are very thankful to the institute for
its hospitality and the very pleasant and relaxed working atmosphere.

The contents of the paper are the following. Chapter 2 introduces notation
and recalls known results that we use throughout the paper. In chapters 3 – 6 the
unitarizability is solved for representations supported on a segment of cuspidal rep-
resentations that contains the reducibility point. The heart of the paper is chapter
4 where we solve the cases α > 1. In chapters 5 and 6 we address the remaining
cases α = 1, 1

2 , 0 which require additional work. All these cases are completely new.
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In chapters 7, 8 and 9 we complete the solution of the unitarizability in corank ≤ 3.
Appendix A by C. Mœglen shows the unitarizability of the isolated representations
L([α− 1], [α]; δ([α];σ)) (for α > 1). Appendix B provides formulas for the Jacquet
modules of these representations.





CHAPTER 2

Notation and Preliminary Results

We fix a local non-archimedean field F of characteristic zero.1 Let G be the
group of F -points of a reductive group defined over F . In this paper, by a rep-
resentation of G we shall always mean a complex, smooth representation. The
Grothendieck group of the category Algf.l.(G) of all finite length representations
of G is denoted by R(G). It carries a natural ordering ≤. We denote by s. s.(τ)
the semi simplification of τ ∈ Algf.l.(G). For brevity, if π1, π2 ∈ Algf.l.(G), the
condition s. s.(π1) ≤ s. s.(π2) will be written simply as π1 ≤ π2.

The contragredient representation of π is denoted by π̃, while the complex
conjugate representation is denoted by π̄. We call ˜̄π the hermitian contragredient
of π and denote it by π+. Then, π 7→ π+ is an (exact) contravariant functor. It is
well known that if π is unitarizable, then π+ ∼= π (i.e., π is hermitian).

2.1. General linear groups

Let F ′ be either F itself or a (separable) quadratic extension thereof. (The
second case is pertaining to unitary groups and the first case to all other clas-
sical groups considered below.) If F ′ 6= F , then Θ denotes the non-trivial F -
automorphism of F ′. Otherwise, Θ denotes the identity mapping on F . The rep-
resentation

(2.1) π̌ = π̃ ◦Θ

will be called the F ′/F -contragredient of π. The representation π◦Θ will be denoted
by πΘ.

We shall now recall notation for the general linear groups (mainly following
[72]). The modulus character of F ′ is denoted by |·|F ′ . The character |det|F ′ of
GL(n, F ′) will be denoted by ν.

We fix the Borel subgroup of upper triangular matrices. For 0 ≤ k ≤ n, let
P(k,n−k) = M(k,n−k) n N(k,n−k) be the standard parabolic subgroup of GL(n, F ′)
of type (k, n − k) with Levi factor M(k,n−k)

∼= GL(k, F ′) × GL(n − k, F ′). For
πi ∈ Algf.l.(GL(ni, F

′)), i = 1, 2 denote by π1 × π2 ∈ Algf.l.(GL(n1 + n2, F
′)) the

representation parabolically inducted from π1 ⊗ π2 on P(n1,n2) (normalized induc-
tion). Let R = ⊕n≥0R(GL(n, F ′)) endowed with the structure of a commutative
graded ring by ×. The biadditive map × : R × R → R gives rise to a map
m : R⊗R→ R.

The normalized Jacquet module of π ∈ Algf.l.(GL(n, F ′)) with respect to
P(k,n−k) is denoted by r(k,n−k)(π). The comultiplication m∗(π) of π is defined

1We expect all the results to hold also in positive characteristic. However, we would need to
verify some facts such as the unitarizability of representations (1.2).

9



10 2. NOTATION AND PRELIMINARY RESULTS

by

m∗(π) =

n∑
k=0

s. s.(r(k,n−k)(π)) ∈ R⊗R.

One extends m∗ additively to a ring homomorphism m∗ : R→ R⊗R in a natural
way. With m and m∗, R is a graded Hopf algebra. The fact that m∗ is a ring
homomorphism follows from the geometric lemma of Bernstein–Zelevinsky (see [7]).

Denote by C (resp., Irr) the set of equivalence classes of all irreducible cuspidal
(resp., irreducible) representations of all GL(n, F ′), n ≥ 1 (resp., n ≥ 0).

By a Z-segment in R we shall mean a set of the form {x, x + 1, . . . , x + n},
where x ∈ R and n ∈ Z≥0. We shall denote the above set by [x, x + n]Z. For any
Z-segment ∆ = [x, y]Z in R and ρ ∈ C, denote

∆(ρ) = [x, y](ρ) = [νxρ, νyρ] := {νzρ; z ∈ ∆}.

The set ∆(ρ) is called a segment in C. The set of all segments in C is denoted by
S(C). It is also convenient to set ∅(ρ) = ∅.

We say that two segments ∆1,∆2 ∈ S(C) are linked if ∆1 ∪ ∆2 ∈ S(C) and
∆1 ∪∆2 6∈ {∆1,∆2}. If the segments ∆i = [xi, yi]

(ρ) are linked and x1 < x2, then
we say that ∆1 precedes ∆2, and write

∆1 ≺ ∆2.

For any set X, we denote by M(X) the set of all finite multisets in X (which
we may view as functions X → Z≥0 with finite support; note that finite subsets
correspond to all functions X → {0, 1} with finite support). A typical elements
of M(X) will be denoted by (x1, . . . , xn) (repetitions of elements can occur, but
the order of the xi’s does not matter). The set M(X) has a natural structure of a
commutative monoid whose zero element is the empty multiset. The operation will
be denoted additively: (x1, . . . , xn) + (y1, . . . , ym) = (x1, . . . , xn, y1, . . . , ym).

For ∆ ∈ S(C) we define supp(∆) to be ∆, but considered as an element of
M(C). For a = (∆1, . . . ,∆n) ∈M(S(C)) we define

supp(a) =

n∑
i=0

supp(∆i) ∈M(C).

2.2. Classifications of admissible duals of general linear groups

Fix a segment ∆ = {ρ, νρ, . . . , νnρ} ∈ S(C). Then, the representation

ρ× νρ× · · · × νnρ

has an irreducible socle, denoted by s(∆), and an irreducible cosocle, denoted by
δ(∆). We have

m∗(δ([ρ, νnρ])) =

n∑
i=−1

δ([νi+1ρ, νnρ])⊗ δ([ρ, νiρ]),(2.2a)

m∗(s([ρ, νnρ])) =

n∑
i=−1

s([ρ, νiρ])⊗ s([νi+1ρ, νnρ]).(2.2b)

Let a = (∆1, . . . ,∆n) ∈M(S(C)). We can choose an enumeration satisfying

if ∆i ≺ ∆j for some 1 ≤ i, j ≤ n, then i > j.
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Then, up to isomorphism, the representations

ζ(a) := s(∆1)× s(∆2)× · · · × s(∆n),

(resp., λ(a) := δ(∆1)× δ(∆2)× · · · × δ(∆n))

are determined by a and admit an irreducible socle (resp., cosocle) denoted by
Z(a) (resp., L(a)). Now Z (resp. L) is called the Zelevinsky (resp. Langlands)
classification of irreducible representations of general linear groups over F ′. (We
follow the presentation of these classifications by F. Rodier in [45].)

Denote by D the set of equivalence classes of all irreducible essentially square-
integrable representations of GL(n, F ′), n ≥ 1, and by Du the subset of all unita-
rizable classes in D (i.e. those having a unitary central character). The mapping

(2.3) (ρ, n) 7→ δ(ρ, n) := δ([−n−1
2 , n−1

2 ](ρ)), C × Z>0 → D

is a bijection.
For δ ∈ D define δu ∈ Du and e(δ) ∈ R by the following requirement:

δ = νe(δ)δu.

Let d = (δ1, . . . , δn) ∈M(D), enumerated so that

e(δ1) ≥ e(δ2) ≥ · · · ≥ e(δn).

Let

λ(d) = δ1 × δ2 × · · · × δn.
Then, the representation λ(d) has an irreducible cosocle, denoted by L(d). Again
d 7→ L(d) is a version of Langlands classification for general linear groups (irre-
ducible representations are parameterized by elements of M(D)).

For d = (δ1, . . . , δn) ∈M(D) denote d̃ = (δ̃1, . . . , δ̃n) ∈M(D), d̄ = (δ̄1, . . . , δ̄n),

d+ = (δ+
1 , . . . , δ

+
n ) and dΘ = (δΘ

1 , . . . , δ
Θ
n ). Then, L(d)̃ = L(d̃), L(d)̄ = L(d̄),

L(d)+ = L(d+) and L(d)Θ = L(dΘ).
Define a mapping t on Irr by Z(a)t = L(a), a ∈ M(S(C)). Extend t additively

to R. Clearly, t is a positive mapping, i.e. it satisfies: r1 ≤ r2 =⇒ rt1 ≤ rt2. A non-
trivial fact is that t is in fact a ring homomorphism (see [2] and [47]). Furthermore,
t is an involution, called Zelevinsky involution.

For a ∈M(S(C)), define at ∈M(S(C)) by the requirement

L(a)t = L(at).

2.3. Classical groups – basic definitions

We will mostly follow the notation of [39] for classical p-adic groups. The main
difference is that the indexing of the classical groups will be slightly different.

Fix a Witt tower V = {Vn}n≥0 of symplectic, quadratic or hermitian vector
spaces over F ′. In the first two cases F ′ = F and in the latter case F ′/F is a
(separable) quadratic extension F with Galois automorphism Θ. In all cases, a
maximal isotropic subspace of Vn has dimension n (see sections III.1 and III.2 of
[28] for more details).2 In particular, V0 is anisotropic.3 Denote by Sn the group of
isometries of Vn. For 0 ≤ k ≤ n, let P(k) be the stabilizer of a fixed k-dimensional

2For some purposes a different indexing of the groups Sn may be more convenient – see [39].
3In the symplectic case, V0 = {0}.



12 2. NOTATION AND PRELIMINARY RESULTS

isotropic subspace of Vn – see [28, §III.2].4 The Levi factor M(k) of P(k) is naturally
isomorphic to GL(k, F ′)×Sn−k. More generally, for any partition β of ` ≤ n we can
in a natural way define a parabolic subgroup Pβ and its Levi subgroup Mβ . (For
Mβ first consider M(`), and then apply the construction from the case of general
linear groups.)

We remark that in the odd orthogonal case we may replace Sn with the group
of isometries of Vn of determinant one.

We exclude in the paper the case of split even orthogonal groups, although we
expect that all the results hold also in this case, with the same proofs. (Split even
orthogonal groups are not connected, which requires some additional checks that
we have not yet carried out.)

A minimal parabolic subgroup in Sn, which is the intersection of all P(k)’s, will
be fixed. (Only standard parabolic subgroups with respect to the fixed minimal
parabolic subgroup will be considered in this paper.)

For the rest of the paper we fix once and for all the series {Sn}n≥0 as above. We

denote by Ccl, (resp., Dcl, T cl, Irrcl) the set of cuspidal (resp., square-integrable,
tempered, all) irreducible representations of Sn, n ≥ 0 (up to equivalence) and
by Csd the subset of C consisting of F ′/F -selfcontragredient representations. (We
shall often apply Casselman’s criteria from [13] for representations to be square-
integrable or tempered.)

2.4. Twisted Hopf algebra structure

For π ∈ Algf.l.(GL(k, F ′)) and σ ∈ Algf.l.(Sn−k), the representation paraboli-
cally induced from π ⊗ σ is denoted by

π o σ.

We shall often use that

(2.4) π1 o (π2 o σ) ∼= (π1 × π2) o σ.

For π as above holds

(2.5) s. s.(π o σ) = s. s.(π̌ o σ).

Therefore, if πoσ is irreducible, then πoσ ∼= π̌oσ. We say that a representation
π of a general linear group over F ′ is F ′/F -selfcontragredient if π ∼= π̌.

The normalized Jacquet module of τ ∈ Algf.l.(Sn) with respect to P(k) is de-
noted by s(k)(τ). Let τ and ω be irreducible representations of GL(p, F ) and Sq,
respectively, and let π be an admissible representation of Sp+q. Then, by Frobenius
reciprocity

Hom
Sp+q

(π, τ o ω) ∼= Hom
GL(p,F )×Sq

(s(p)(π), τ ⊗ ω),

while the second adjointness implies

Hom
Sp+q

(τ o ω, π) ∼= Hom
GL(p,F )×Sq

(τ̌ ⊗ ω, s(p)(π)).

Denote

R(S) = ⊕
n≥0

R(Sn).

4One can find in [60] matrix realizations of the symplectic and split odd-orthogonal groups.
In a similar way one can make matrix realizations also for other classical groups.
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Now o induces in a natural way a mapping R×R(S)→ R(S), which is denoted
again by o. For τ ∈ Algf.l.(Sn), denote

µ∗(τ) =

n∑
k=0

s. s.
(
s(k)(τ)

)
.

We extend µ∗ additively to µ∗ : R(S)→ R⊗R(S). Denote

(2.6) M∗ = (m⊗ 1) ◦ (ˇ ⊗m∗) ◦ κ ◦m∗ : R→ R⊗R,

where ˇ : R → R is a group homomorphism determined by the requirement that
π 7→ π̌ for all π ∈ Irr, and κ : R × R → R × R maps

∑
xi ⊗ yi to

∑
yi ⊗ xi. The

action o of R⊗R on R⊗R(S) is defined in a natural way. Then,

(2.7) µ∗(π o σ) = M∗(π) o µ∗(σ)

holds for π ∈ R and σ ∈ R(S).
For any finite length representation π of GL(k, F ′), the component of M∗(π)

which is in R(GL(k, F ′))⊗R(GL(0, F ′)), will be denoted by

M∗GL(π)⊗ 1.

Let π be a representation of GL(k, F ′) of finite length, and let σ ∈ Ccl. Suppose
that τ is a subquotient of π o σ. Then, we shall denote s(k)(τ) also by

sGL(τ).

If in addition, τ is irreducible, then we shall say that

(2.8) σ

is the partial cuspidal support of τ . We say that θ ∈ C is a factor of τ if there exists
an irreducible subquotient β ⊗ σ of sGL(τ) such that θ is in the support of β.

Let π be a finite length representation of a general linear group, and let τ be a
representation of Sn as above. Then, (2.7) implies

(2.9) s. s.(sGL(π o τ)) = M∗GL(π)× s. s.(sGL(τ))

(× in the above formula denotes multiplication in R of M∗(π) with the factors on
the left-hand side of ⊗ in s. s.(sGL(τ))).

Let τ be a representation of some GL(m,F ) and let m∗(τ) =
∑
x ⊗ y. Then,

the formula (2.6) implies directly

(2.10) M∗GL(τ) =
∑

x× y̌.

Furthermore, the sum of the irreducible subquotients of the form 1⊗∗ in M∗(τ) is

(2.11) 1⊗ τ.

Now assume that π is a representation of GL(d, F ) and σ is a representation of a
classical group. Let π1⊗π2⊗π3 be an irreducible subquotient of some r(n1,n2,n3)(π)
(n1 + n2 + n3 = n) and let π4 ⊗ σ0 be an irreducible subquotient of some s(m1)(σ)
(m1 ≤ m). Then,

π1 × π4 × π̃3 ⊗ π2 o σ0

is a subquotient of the corresponding Jacquet module (see [60, Lemma 5.1] and the
discussion preceding it).
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2.5. Some formulas for M∗

Let ρ ∈ Csd. Suppose that x, y ∈ R satisfy y − x ∈ Z≥0. Then, one directly
gets from (2.2a) and (2.6)

(2.12) M∗
(
δ([x, y](ρ))

)
=

y∑
i=x−1

y∑
j=i

δ([−i,−x](ρ))× δ([j+ 1, y](ρ))⊗ δ([i+ 1, j](ρ)),

where y − i, y − j ∈ Z≥0 in the above sums. In particular

(2.13) M∗GL

(
δ([x, y](ρ))

)
=

y∑
i=x−1

δ([−i,−x](ρ))× δ([i+ 1, y](ρ)).

In a similar way, one gets for Zelevinsky segment representations

M∗(s([x, y](ρ))) =
∑

x−1≤i≤y

∑
x−1≤j≤i

s([−y,−i− 1](ρ))× s([x, j](ρ))⊗ s([j + 1, i](ρ)).

More generally, let π = L(∆1, . . . ,∆k) be a ladder representations, i.e., we can
write ∆i = [ai, bi]

(ρ) where ak < · · · < a1 and bk < · · · < b1 (we continue to assume
below ρ ∼= ρ̌). Then, using [27] we get

(2.14) M∗GL(π) =
∑

ai−1≤xi≤bi,
xk<···<x1

L( ([−xi,−ai](ρ))1≤i≤k )×L( ([xi + 1, bi]
(ρ))1≤i≤k ).

2.6. Langlands classification for classical groups ([49], [11], [26], [43],
[72])

Denote

D+ = {δ ∈ D : e(δ) > 0}.
For t = ((δ1, δ2, . . . , δk), τ) ∈M(D+)×T cl take a permutation p of {1, . . . , k} such
that

(2.15) e(δp(1)) ≥ e(δp(2)) ≥ · · · ≥ e(δp(k)).

Then, the representation

λ(t) := δp(1) × δp(2) × · · · × δp(k) o τ

has an irreducible cosocle, denoted by

L(t).

The mapping

t 7→ L(t)

defines a bijection between M(D+)× T cl and Irrcl. This is the Langlands classifi-
cation for classical groups. The multiplicity of L(t) in λ(t) is one.

Write t = (d; τ). Then, L(d; τ )̄ ∼= L(d̄; τ̄) and L(d; τ )̃ ∼= L(dΘ; τ̃).
Let t = ((δ1, δ2, . . . , δk), τ) ∈ M(D+) × T cl and suppose that a permutation

p satisfies (2.15). Suppose that δp(i) is a representation of GL(ni, F ) and L(t) a
representation of Sn. Define

e∗(t) = (e(δp(1)), . . . , e(δp(1))︸ ︷︷ ︸
n1 times

, . . . , e(δp(k)), . . . , e(δp(k))︸ ︷︷ ︸
nk times

, 0, . . . , 0︸ ︷︷ ︸
n′ times

),
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where n′ = n− (n1 + · · ·+ nk). Consider the partial ordering on Rn given by

(x1, . . . , xn) ≤ (y1, . . . , yn) ⇐⇒
j∑
i=1

xi ≤
j∑
i=1

yi, 1 ≤ j ≤ n.

Suppose t, t′ ∈M(D+)× T cl and L(t′) is a subquotient of λ(t). Then,

(2.16) e∗(t
′) ≤ e∗(t), with an equality ⇐⇒ t′ = t.

(See [59, §6] for the symplectic groups – the same proof works for all classical
groups other than the split even orthogonal groups.)

For ∆ ∈ S define c(∆) to be e(δ(∆)). Let

S(C)+ = {∆ ∈ S(C); c(∆) > 0}.
In this way we can define in a natural way the Langlands classification (a, τ) 7→
L(a; τ) using M(S(C)+)× T cl as the parameters.

2.7. Irreducible subquotients of induced representations of classical
groups

We will recall a very useful fact from [63].
For d = (δ1, . . . , δk) ∈M(D) denote by

d↑

the element of M(D+) obtained from d by removing every δi such that e(δi) = 0
and replacing every δi for which e(δi) < 0 by δ̌i. Also, denote by

du

the multiset in M(D) obtained from d by retaining only the δi’s such that e(δi) = 0.

Proposition 2.1 ([63]). Let d ∈ M(D) and t = (d′, τ) ∈ M(D+) × T cl. The
tempered representation λ(du) o τ is unitarizable and multiplicity free. For every
irreducible constituent τ ′ of λ(du) o τ , the representation

L(d↑ + d′; τ ′)

occurs with multiplicity one in the Jordan–Hölder sequence of the induced represen-
tation

L(d) o L(d′; τ).

2.8. Involution

The Zelevinsky involution is a special case of an involution DG which exists
on the Grothendieck group of the representations of any connected reductive p-
adic group. This involution is constructed in [2] and [47]. It takes any irreducible
representation to an irreducible representation up to a sign. For any irreducible
representation π, let πt be the irreducible representation such that DG(π) = ±πt.
We call πt the DL involution of π, or DL dual of π.

This involution is compatible with parabolic induction in the sense that

(π o τ)t = πt o τ t

(on the level of Grothendieck groups).
Furthermore, for Jacquet modules, the mapping

π1 ⊗ . . . πl ⊗ µ 7→ π̌t1 ⊗ . . . π̌tl ⊗ µt,
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is a bijection from the semi simplification of sβ(π) onto the semisimplification of
sβ(πt) (β is the partition which parametrizes the corresponding parabolic sub-
group).

2.9. Reducibility point and generalized Steinberg representations

Let ρ ∈ C with a unitary central character and σ ∈ Ccl. If ρ /∈ Csd then νxρoσ
is irreducible for all x ∈ R. Otherwise,

(2.17) ναρ,σρo σ

is reducible for a unique αρ,σ ≥ 0 ([50]). C. Mœglin has proved that αρ,σ ∈ 1
2Z.

Given ρ ∈ Csd, either αρ,σ ∈ Z for all σ ∈ Ccl or αρ,σ ∈ 1
2 + Z for all σ ∈ Ccl.

We say that ρ is of odd type (or parity) in the former case and of even type (or
parity) in the latter. The parity of ρ depends only on ρ and the Witt tower and
can be detected by the existence of a pole for a suitable L-function. For instance,
for odd orthogonal groups, ρ is of odd (resp., even) type if and only if the exterior
(resp., symmetric) square L-function of ρ has a pole at s = 0. These conditions are
reversed for symplectic groups.

From now on we fix ρ ∈ Csd and σ ∈ Ccl and denote the reducibility point αρ,σ
simply by

α.

The representation να+nρ×να+n−1ρ×· · ·×να+1ρ×ναρoσ admits an irreducible
socle, which is denoted by δ([ναρ, να+nρ];σ) (n ≥ 0). It is square-integrable and
called a generalized Steinberg representation. We have

(2.18) µ∗
(
δ([ναρ, να+nρ];σ)

)
=

n∑
k=−1

δ([να+k+1ρ, να+nρ])⊗ δ([ναρ, να+kρ];σ),

δ([ναρ, να+nρ];σ)̃ ∼= δ([ναρ, να+nρ]; σ̃).

Applying the DL involution, we get

(2.19) µ∗
(
L(να+nρ. . . . , να+1ρ, ναρ;σ)

)
=

n∑
k=−1

L(ν−(α+n)ρ, . . . , ν−(α+k+2)ρ, ν−(α+k+1)ρ)⊗ L(να+kρ. . . . , να+1ρ, ναρ;σ).

The generalized Steinberg representation and its DL dual are the only unita-
rizable irreducible subquotients of να+nρ× να+n−1ρ× · · · × να+1ρ× ναρo σ ([21],
[20]; see also [70, §13]).

2.10. Representations of segment type

We shall recall the formulas for Jacquet modules obtained in [33].5 We fix
ρ ∈ Csd and σ ∈ Ccl and consider irreducible subquotients of δ([ν−cρ, νdρ]) o σ,
where c+ d ∈ Z≥0. As above, α ∈ 1

2Z≥0 denotes the reducibility exponent (2.17).

The representation δ([ν−cρ, νdρ])oσ is multiplicity free of length at most three.
It is reducible (resp., of length three) if and only if [−c, d]Z ∩ {−α, α} 6= ∅ (resp.,
{−α, α} ⊆ [−c, d]Z and c 6= d).

5The results of [33] are only stated for symplectic and split odd-orthogonal groups but the
proof works for all classical groups. Note that the proof does not use the classification of Dcl in

terms of Ccl.
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Assume that d ≥ c and d − α ∈ Z. We define terms δ([ν−cρ, νdρ]+;σ),
δ([ν−cρ, νdρ]−;σ) and Lα([ν−cρ, νdρ];σ).6 Each of these terms is either an irre-
ducible representation or the trivial (zero-dimensional) representation. They satisfy
(2.20)
δ([ν−cρ, νdρ]) o σ = δ([ν−cρ, νdρ]+;σ) + δ([ν−cρ, νdρ]−;σ) + Lα([ν−cρ, νdρ];σ)

in the corresponding Grothendieck group.
Suppose first that δ([ν−cρ, νdρ]) o σ is irreducible. Then, we define that

δ([ν−cρ, νdρ]−;σ) = 0 and require that δ([ν−cρ, νdρ]+;σ) 6= 0 if and only if [−c, d] ⊆
[−α+ 1, α− 1]. By (2.20) this determines Lα([ν−cρ, νdρ];σ).

Suppose now that δ([ν−cρ, νdρ]) o σ is reducible. If c = d, we define that
Lα([ν−cρ, νdρ];σ) = 0. Otherwise, Lα([ν−cρ, νdρ];σ) = L([ν−cρ, νdρ];σ).

If α > 0, then there is a unique irreducible subquotient γ of δ([ν−cρ, νdρ]) o σ
which has in sGL(γ) an irreducible subquotient τ ⊗ σ such that τ is generic, and
e(θ) ≥ 0 for all θ in supp(τ). We denote this γ by δ([ν−cρ, νdρ]+;σ).

If α = 0, we write ρoσ as a sum of irreducible subrepresentations τ+⊕ τ−. We
denote also τ± by δ([ρ]±;σ). Then, there exists a unique irreducible subquotient
of δ([ν−cρ, νdρ])o σ that contains an irreducible representation of the form τ ⊗ τ±
in its Jacquet module with respect to an appropriate standard parabolic subgroup,
such that τ is generic, and e(θ) ≥ 0 for all θ in supp(τ). We denote this subquotient
by δ([ν−cρ, νdρ]±;σ).

If c = d or the length of δ([ν−cρ, νdρ]) o σ is three, then δ([ν−cρ, νdρ]) o σ
contains a unique irreducible subrepresentation different from δ([ν−cρ, νdρ]+;σ)
and we denote it by δ([ν−cρ, νdρ]−;σ). Otherwise, we take δ([ν−cρ, νdρ]−;σ) = 0.

The representations δ([ν−cρ, νdρ]±;σ) are called representations of segment
type.

The representation δ([ν−cρ, νdρ]+;σ) is square-integrable if and only if c 6=
d and {−α, α} ⊆ [−c, d] or α = −c. If δ([ν−cρ, νdρ]+;σ) is square-integrable,
then δ([ν−cρ, νdρ]−;σ) is also square-integrable if it is non-zero. Conversely, if
δ([ν−cρ, νdρ]−;σ) is square-integrable (and non-zero), then δ([ν−cρ, νdρ]+;σ) is
square-integrable (and non-zero).

In the two formulas below, we symmetrize notation in the following way. We
define

δ([ν−dρ, νcρ]+;σ), δ([ν−dρ, νcρ]−;σ) and Lα([ν−dρ, νcρ];σ)

to denote δ([ν−cρ, νdρ]+;σ), δ([ν−cρ, νdρ]−;σ) and Lα([ν−cρ, νdρ];σ) respectively
(assumptions on c and d are as above).

Remark 2.2. Now we recall the formulas for the Jacquet modules of segment
representations and associated Langlands quotient from [33]. We take this oppor-
tunity to correct several typographical errors in [33]. The upper limit in the first
sum of the second row of (2.21) is d− 1 (instead of c).7 The limits of the first sum
in the third row of (2.21) are −c − 1 ≤ i ≤ c − 1 (instead of −c − 1 ≤ i ≤ c ; the
index c does not give any contribution). Further, the limits in the first sum in the
second row of (2.22) are −c− 1 ≤ i ≤ d− 1 (instead of −c− 1 ≤ i ≤ d ; the index
d does not contribute in the formula).8

6In [33] we denoted the last term by Lα(δ([ν−cρ, νdρ]);σ).
7This correction refers to the formulas on page 441 and Corollaries 4.3, 5.4 and 6.4 of [33].
8Each of these two not so essential modifications also refers to the formulas on page 441 and

Corollaries 4.3, 5.4 and 6.4 of [33].
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If δ([−c, d](ρ)) o σ is reducible (with notation as above), then we have the
following equality

(2.21)

µ∗
(
δ([−c, d]

(ρ)
± ;σ)

)
=

±α−1∑
i=−c−1

δ([−i, c](ρ))× δ([i+ 1, d](ρ))⊗ σ

+

d−1∑
i=−c−1

d∑
j=i+1

δ([−i, c](ρ))× δ([j + 1, d](ρ))⊗ δ([i+ 1, j]
(ρ)
± ;σ)

+
∑ ∑

−c−1≤i≤c−1 i+1≤j≤c
i+j<−1

δ([−i, c](ρ))× δ([j + 1, d](ρ))⊗ Lα([i+ 1, j](ρ);σ).

If additionally c 6= d, and either c < α or α ≤ c < d, then we have
(2.22)

µ∗
(
L([−c, d](ρ);σ)

)
= µ∗

(
Lα([−c, d](ρ);σ)

)
=

d∑
i=α

L([−i, c](ρ), [i+ 1, d](ρ))⊗ σ+∑
−c−1≤i≤d−1

∑
i+1≤j≤d

0≤i+j

L([−i, c](ρ), [j + 1, d](ρ)
)
⊗ Lα([i+ 1, j](ρ);σ).

2.11. Jordan blocks

Now we shall recall the definition of the Jordan blocks Jord(π) of an irreducible
square-integrable representation π of Sn.

Definition 2.3. For any π ∈ Dcl denote by Jord(π) the set of all square-
integrable representations δ(ρ, a) ∈ D where ρ ∈ Csd and a ∈ Z>0 is of the same
parity of ρ, such that δ(ρ, a) o π is irreducible. For any ρ ∈ Csd we denote

Jordρ(π) = {a : (ρ, a) ∈ Jord(π)} ⊂ Z>0.

The set Dcl is classified by admissible triples (see [39] for details). Any π ∈ Dcl
is parameterized by a triple (Jord(π), επ, πcusp), where επ is a function9 defined on
a subset of Jord(π) ∪ Jord(π) × Jord(π) which takes values in {±1}, and πcusp is
the partial cuspidal support (which was defined earlier).

The construction of irreducible square-integrable representations in [39] starts
with strongly positive representations (επ is alternating function on Jordρ(π) in this
case). The simplest example of such representations is the generalized Steinberg
representations. We shall give one more example of strongly positive representa-
tions.

Assume that the reducibility point α = αρ,σ is strictly positive. Take k ∈ Z≥0

such that k < α. Then, the representation να−kρ×να−k+1ρ×· · ·×ναρoσ admits
an irreducible socle, which we denote by

δ([να−kρ], [να−k+1ρ], . . . , [ναρ];σ).

This is an example of strongly positive (square-integrable) representation.
Sometimes when we deal with strongly positive representations, to stress this

we shall add subscript s.p. (we shall not do this for the generalized Steinberg
representations). Therefore, the above representations we shall also denote by
δs.p.([ν

α−kρ], [να−k+1ρ], . . . , [ναρ];σ).

9It is called partially defined function attached to π.
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Now we recall Proposition 6.1 from [63], which we use several times in the
paper. (Note that in (vii) of Proposition 6.1 in [63], the condition on parity was
forgotten by mistake.)

Proposition 2.4. Let π ∈ Dcl, ρ ∈ Csd and a > 0. Then,

(1) νaρo π is reducible if and only if ν−aρo π is reducible.
(2) If a /∈ 1

2Z, then νaρo π is irreducible.
(3) ρo π is reducible if and only if ρ has odd parity and 1 6∈ Jordρ(π).

(4) If a 6∈ Jordρ(π), then ν(a+1)/2ρo π is irreducible.

(5) If a ∈ Jordρ(π) and a+ 2 6∈ Jordρ(π), then ν(a+1)/2ρo π is reducible.

(6) Suppose that a and a+2 are in Jordρ(π). Then, ν(a+1)/2ρoπ is reducible
if and only if ε((ρ, a)) = ε((ρ, a+ 2)).

(7) ν1/2ρ o π is reducible if and only if ρ is of even parity and either 2 6∈
Jordρ(π), or 2 ∈ Jordρ(π) and ε((ρ, 2)) = 1.

In other words, ν1/2ρ o π is irreducible if and only if either ρ is of odd
parity or 2 ∈ Jordρ(π) and ε((ρ, 2)) = −1.

2.11.1. On computing of Jordan blocks. Next, we recall how to compute
the Jordan blocks of any π′ ∈ Dcl.

Suppose that π′ is a subquotient of

ρ1 × · · · × ρr o σ,

where ρi ∈ C and σ ∈ Ccl. Fix ρ ∈ Csd and let α = αρ,σ. Let η = 0 if α ∈ Z and
η = 1 otherwise.

If no νxρ, x ∈ 1
2Z is a factor of π′, then

Jordρ(π
′) = {η + 1, η + 3, . . . , 2α− 3, 2α− 1}.

(Note that for α = 0, Jordρ(π
′) = ∅.)

In the general case, we recall Proposition 2.1 of [39], from which we can compute
Jordan blocks in general.

Proposition 2.5. Let x, y ∈ 1
2Z be such that x − y ∈ Z≥0 and x − α ∈ Z.

Suppose that π ∈ Dcl embeds in the induced representation

π ↪→ νxρ× · · · × νx−i+1ρ× · · · × νyρo π′.

Then,

(1) If y > 0, then 2y − 1 ∈ Jordρ(π
′) and

Jordρ(π) = (Jordρ(π
′) \ {2y − 1}) ∪ {2x+ 1}.

(2) If y ≤ 0 , then 2x+ 1 and −2y + 1 are not in Jordρ(π
′) and

Jordρ(π) = Jordρ(π
′) ∪ {2x+ 1,−2y + 1}.

Remark 2.6. The Local Langlands correspondence for the general linear group
([22], [23]) gives a bijection Φ between the set D (resp., C) and the irreducible
representations of the Weil–Deligne (resp., Weil) group.10 (Recall that (ρ, n) 7→
δ(ρ, n) gives a parametrization of D by C × Z>0.)

J. Arthur has obtained in [1, Theorem 1.5.1] a classification of irreducible
tempered representations of classical groups attaching to them pairs of admissi-
ble homomorphisms and characters of the component groups of the admissible

10An alternative classification of C is given in [12].
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homomorphisms. C. Mœglin has proved in [38, Theorem 1.3.1] that the admissible
homomorphism attached to π ∈ Dcl is

⊕
σ∈Jord(π)

Φ(σ).

In this way one gets a classification of Dcl in terms of (certain) finite sets of Csd
and functions on these sets with values in {±1}. In addition, [38, Theorem 1.5.1]
π ∈ Ccl if and only if for any ρ ∈ Csd, επ(δ(k, 2)) = −1 whenever 2 ∈ Jordρ(π) and
if k ∈ Jordρ(π) with k > 2 then k − 2 ∈ Jordρ(π) and επ((δ, k)) 6= επ((δ, k − 2)).
Finally, if σ ∈ Ccl and Jordρ(σ) 6= ∅ then

αρ,σ =
1+max Jordρ(π)

2

while if Jordρ(σ) = ∅ then αρ,σ is 0 or 1
2 according to the parity of ρ (see [36] or

[39]). One can find in [67] more details and precise statements related to the above
discussion.

2.12. Induction of GL-type

Next we shall recall the results of [31], except that we shall formulate them in
terms of the Langlands classification. As above, α = αρ,σ denotes the reducibility
point (then ρ ∼= ρ̌ ). Let π ∈ Irr.

If supp(π) contains ναρ or ν−αρ, then π o σ is reducible ([31]).
Suppose now that supp(π) does not contain ναρ or ν−αρ. Assume that all

members of supp(π) are contained in {νk+xρ : k ∈ Z}, for some fixed x ∈ 1
2Z. Write

π = L(d), for some d ∈ M(D). Denote by d>0 (resp. d<0) the multiset consisting
of all δ in d such that e(δ) > 0 (resp e(δ) < 0), counted with multiplicities. Then,
if π is a ladder representation or if α ≤ 1 and all members of supp(π) are contained
in {νk+αρ; k ∈ Z}, then holds

(2.23) L(d) o σ is reducible ⇐⇒ L(d>0)× L(d<0)̌ is reducible .

A very special case is the following very useful result proved already in [61].
For ∆ ∈ S(C) holds:

δ(∆) o σ is reducible ⇐⇒ θ o σ is reducible for some θ ∈ ∆.

Remark 2.7. (1) We shall often use the following simple consequence of
Proposition 3.2 of [63]. Let ρ ∈ Csd and assume that π ∈ Irr is supported
on

{νx+zρ : z ∈ Z} for some fixed x ∈ R \ 1
2Z.

Then, π o σ is irreducible.
(2) One can combine the above fact with the Jantzen decomposition (see

section 8 of [70]) to get further irreducibilities. We shall do it later in the
paper. One can get these irreducibilities also directly from Proposition
3.2 of [63].

2.13. Technical lemma on irreducibility

Lemma 2.8. Let d1, d2, d3 ∈ M(D+) and τ ∈ T cl. Write di = (δ
(i)
1 , . . . , δ

(i)
ki

),
i = 1, 2, 3. Suppose

(1) L(d1)× L(d2) is irreducible;
(2) L(d1)× L(d2)̌ is irreducible;
(3) L(d1)× L(d3; τ) is irreducible;
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(4) e(δ
(i)
j ) ≥ e(δ(3)

l ) for all i = 1, 2, 1 ≤ j ≤ ki, 1 ≤ l ≤ k3;

(5) d̄i ∼= dΘ
i , i = 1, 2, 3.

Then,

L(d1) o L(d2 + d3; τ)

is irreducible.

Proof. First, L(d2 + d3; τ) is the unique irreducible quotient of λ(d2 + d3; τ).
Condition (4) implies that L(d2)oL(d3; τ) is also quotient of λ(d2 + d3; τ). There-
fore, L(d2 + d3; τ) is (the unique irreducible) quotient of L(d2) o L(d3; τ). This
implies that L(d1) o L(d2 + d3; τ) is a quotient of L(d1)× L(d2) o L(d3; τ). Since
L(d1) × L(d2) o L(d3; τ) = L(d1 + d2) o L(d3; τ), by condition (1) the last repre-
sentation is a quotient of λ(d1 + d2 + d3; τ). This implies that L(d1)oL(d2 + d3; τ)
has a unique irreducible quotient, which is L(d1 + d2 + d3; τ), and that this quo-
tient occurs with multiplicity one. Observe that (1) – (3) imply L(d1) × L(d2) o
L(d3; τ) ∼= L(d1)̌ ×L(d2)oL(d3; τ). Therefore, L(d1)oL(d2 + d3; τ) is a quotient
of L(d1)̌ × L(d2) o L(d3; τ).

Obviously, L(d1)̌ oL(d2+d3; τ) is a quotient of L(d1)̌ ×L(d2)oL(d3; τ), which
implies that L(d1+d2+d3; τ) is a quotient of L(d1)̌ oL(d2+d3; τ). Now observe that
(5) implies L(d1+d2+d3; τ)+ ∼= L(d1+d2+d3; τ) and L(d2+d3; τ)+ ∼= L(d2+d3; τ).
Therefore,

L(d1 + d2 + d3; τ) ↪→ (L(d1)̌ )+ o L(d2 + d3; τ) ∼= L(d1) o L(d2 + d3; τ).

This implies the irreducibility of L(d1) o L(d2 + d3; τ) since L(d1 + d2 + d3; τ) is a
unique irreducible quotient of L(d1) o L(d2 + d3; τ), and it has multiplicity one in
L(d1) o L(d2 + d3; τ). �

In the paper, we shall use the following special case of the above lemma:

Corollary 2.9. Let ρ ∈ Csd and τ ∈ T cl. Suppose that d1, d2 ∈ M(D+) are

such that all elements in their supports are contained in either {νk+ 1
2 ρ : k ∈ Z} or

{νkρ : k ∈ Z}. If the following three representations

L(d1)× L(d2), L(d1)× L(d2 )̌, L(d1) o τ

are irreducible, then

L(d1) o L(d2; τ)

is irreducible. �

2.14. Distinguished irreducible subquotient in induced representation

Fix ρ ∈ Csd and σ ∈ Ccl. Let c be a multiset of elements of representations in

{νk+ 1
2 ρ : k ∈ Z} (⊆M(C) ⊆M(D)).

Then, λ(c↑) has a unique generic irreducible subquotient (which has multiplicity
one in λ(c↑)). Denote it by λ(c↑)gen. Now the formula (2.7) directly implies that
the multiplicity of λ(c↑)gen ⊗ σ in sGL(λ(c) o σ) is one. This implies that λ(c) o σ
has a unique irreducible subquotient π which contains λ(c↑)gen ⊗ σ in sGL(π) as a
subquotient. We denote this π by

λ(c; ρ)+.

Clearly, it has multiplicity one in λ(c) o σ.
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Let now c be a (finite) multiset of elements of

{νkρ : k ∈ Z}.
Then, λ(c↑+cu) has a unique generic irreducible subquotient (which has multiplicity
one in λ(c↑ + cu)). Denote it by λ(c↑ + cu)gen. Again the formula (2.7) directly

implies that the multiplicity of λ(c↑ + cu)gen ⊗ σ in sGL(λ(c)o σ) is 2m(ρ,c), where
m(ρ, c) is the multiplicity of ρ in c. In this case we have the following

Lemma 2.10. Suppose that c does not contain the reducibility point ναρ, or
that α > 0. Then, λ(c) o σ has a unique irreducible subquotient π which contains
λ(c↑ + cu)gen ⊗ σ in sGL(π) as a subquotient. We denote this π by

λ(c; ρ)+.

It has multiplicity one in λ(c)oσ and its Jacquet module contains λ(c↑+cu)gen⊗σ
with multiplicity 2m(ρ,c).

Proof. It suffices to show that the Jacquet module of λ(c; ρ)+. contains λ(c↑+
cu)gen ⊗ σ with multiplicity 2m(ρ,c). We now prove this claim.

First consider the case when c =
∑n
i=1 ∆i, for some ∆i ∈ S(C) such that

∆iˇ = ∆i for all i. We shall see by induction that in this case the lemma holds,
and we shall show that λ(c; ρ)+ is a subrepresentation of (

∏n
i=1 δ(∆i))o σ. By the

theory of R-groups it is enough to prove the claim when all ∆i are different, and
all ∆i contain ναρ.

Let i = 1. Denote ∆1,α≤ := {νβρ ∈ ∆i;β ≥ α}. Consider δ(∆1 \ ∆1,α≤) o
δ(∆1,α≤;σ) and δ(∆1)o σ. The last representation has length two. In the Jacquet
module of both representations, λ(c↑ + cu)gen ⊗ σ has multiplicity 2 (as well as of
λ(c) o σ). From Jacquet module easily follows that δ(∆1) o σ 6≤ δ(∆1 \∆1,α≤) o
δ(∆1,α≤;σ). This, together with the above multiplicities of λ(c↑+cu)gen⊗σ, imply
the claim.

For i = 2, we consider δ(∆1)o λ(∆2; ρ)+ and δ(∆2)o λ(∆1; ρ)+. We conclude
in a similar way. Multiplicity of λ(c↑+ cu)gen⊗σ is now 4 in both Jacquet modules
(and in Jacquet module of λ(c) o σ).

For the general case, we consider δ(∆1) o λ(∆2 + · · · + ∆n; ρ)+ and δ(∆n) o
λ(∆1 + · · ·+ ∆n−1; ρ)+ (see also Proposition 5.1 of [68], and its proof).

Now we go to the proof of the general case. The first observation is that one
can easily show that there exists c′ ∈M(C) such that

(1) s. s.(λ(c) o σ) = s. s.(λ(c′) o σ)
(2) there exist ∆1, . . . ,∆k,Γ1, . . . ,Γl ∈ S(C) such that

(a) c′ = ∆1 + · · ·+ ∆k + Γ1 + · · ·+ Γl;
(b) c(∆i) ≥ 0 and ρ ∈ ∆i, i = 1, . . . , k;
(c) ∆i+1 ∪∆i+1ˇ⊆ ∆i ∩∆i ,̌ i = 1, . . . , k − 1;
(d) c(Γj) > 0 and ρ 6∈ Γj , j = 1, . . . , l;
(e) Γj is not linked to any other Γj′ , or any ∆i, j = 1, . . . , l
(f) Γjˇ is not linked to any ∆i, j = 1, . . . , l11.

11To get these segments, one consider νxρ ∈ c with maximal |x|. Then, ν|x|ρ is the right
end of ∆1 or Γ1 (it depends on the fact if by the process that follows one will reach ρ or not).

Then, one looks if ν|x|−1ρ ∈ c or ν−(|x|−1)ρ ∈ c (if there is no such a member, then the first

segment consists of ν|x|ρ and we repeat above search with c − (νxρ)). If yes, one has the next
point of the segment of cuspidal representations and we continue the above procedure (looking for

an exponent which is smaller for one then the previous exponent) as long as we can, in forming
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Observe that k = m(ρ, c).
Suppose that the claim does not hold for this c (and σ). This implies that in

λ(c) o σ there exists an irreducible subquotient π such that the multiplicity m of
λ(c↑ + cu)gen ⊗ σ in sGL(π) satisfies 0 < m < 2k. We know

(2.24) π ≤ (

k∏
i=1

δ(∆i))× (

l∏
j=1

δ(Γj)) o σ,

since the multiplicity of λ(c↑ + cu)gen ⊗ σ in the Jacquet module of the right-hand
side is 2k, which is the same as it is in λ(c′) o σ (we shall use this argument also
below, without repeating this explanation). The above inequality implies

(

k∏
i=1

δ(∆iˇ\∆i)) o π ≤ (

k∏
i=1

δ(∆iˇ\∆i))× (

k∏
i=1

δ(∆i))× (

l∏
j=1

δ(Γj)) o σ.

Denote ∆′′i = ∆i ∪∆iˇ and c′′ = ∆′′1 + · · · + ∆′′k + Γ1 + · · · + Γl. Considering how
on the right-hand side we get λ((c′′)↑ + c′′u)gen ⊗ σ in the Jacquet module (all of
them we get from terms of λ(c↑ + cu)gen ⊗ σ multiplying with δ(∆i \ ∆i )̌’s and
taking appropriate subquotient), we conclude that its multiplicity in the left-hand
side is m. Therefore, there is an irreducible subquotient π′′ of the left-hand side
which has λ((c′′)↑ + c′′u)gen ⊗ σ in its Jacquet module with multiplicity m. Now in
the same way as in the case of (2.24), we conclude

(2.25) π′′ ≤ (

l∏
j=1

δ(Γj))× (

k∏
i=1

δ(∆′′i )) o σ.

Write Γj = [νgj,bρ, νgj,eρ]. Denote Γ′j = [ν−gj,eρ, νgj,b−1ρ], Γ′′j = Γj ∪ Γ′j , c
′′′ =

∆′′1 + · · ·+ ∆′′k + Γ′′1 + · · ·+ Γ′′l . Then,

(

l∏
j=1

δ(Γ′j)) o π′′ ≤ (

l∏
j=1

δ(Γ′j))× (

l∏
j=1

δ(Γj))× (

k∏
i=1

δ(∆′′i )) o σ.

Considering how on the right-hand side we get λ((c′′′)↑+ c′′′u )gen⊗σ in the Jacquet
module (all of them we get from terms of λ((c′′)↑+ c′′u)gen⊗σ multiplying with the
following two δ([ρ, νgj,eρ])×δ([νρ, νgj,b−1ρ]), δ([νρ, νgj,eρ])×δ([ρ, νgj,b−1ρ]) subquo-
tients of M∗(δ(G′j))’s, and taking appropriate irreducible subquotient), we conclude

that its multiplicity is 2lm in the left-hand side, which is strictly smaller then 2k+l.
Directly follows that this multiplicity is positive. This is a contradiction with the
first part of the proof. The proof is now complete. �

Remark 2.11. (1) If σ is generic, then λ(c; ρ)+ is generic (then α ∈
{ 1

2 , 1}; we do not consider here reducibility at 0).
(2) Since C ⊆ D, then M(C) ⊆ M(D). We say that π ∈ Irr is cogeneric if

π = L(d) for some d ∈M(C).
Let c be a multiset of elements of {νk+ 1

2 ρ : k ∈ Z}. Then, λ(c↑)̌
has a unique cogeneric irreducible subquotient (which has multiplicity
one in λ(c↑)̌ ). Denote it by λ(c↓)cogen. Now the formula (2.7) directly

the first segment of cuspidal representations. After we cannot continue the above procedure, we

have got the first segment (which is ∆1 or Γ1, depending if ρ is in it, or not). Now we repeat the

above procedure with c from which we have removed terms used in the above process. We repeat
these steps as long as there are remaining members of c. In this way one gets segments in (2).
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implies that the multiplicity of λ(c↓)cogen ⊗ σ in sGL(λ(c) o σ) is one.
This implies that λ(c) o σ has a unique irreducible subquotient π which
contains λ(c↓)cogen ⊗ σ in sGL(π) as a subquotient. We denote this π by

λ(c; ρ)−.

We define representation λ(c; ρ)− analogously for a multiset c of represen-

tations in {νk+ 1
2 ρ : k ∈ Z} (in this case we consider λ(c↑ˇ+ cu)cogen ⊗ σ).

Then, the analogue of Lemma 2.10 holds for λ(c; ρ)−. Furthermore,

(2.26) λ(c; ρ)t+ = λ(c; ρ)−.

Suppose that π = λ(c; ρ)+ is square-integrable, and ∆ is a segment contained

in {νk+ 1
2 ρ : k ∈ Z} or {νkρ : k ∈ Z}, such that ∆ = ∆ .̌ Then, we denote

π = λ(c+ ∆; ρ)+ by

τ(∆+;π).

One directly sees that τ(∆+;π) ≤ δ(∆)o π. Furthermore, if δ(∆)o π is reducible,
then it decomposes into a direct sum of two nonequivalent irreducible (tempered)
representations. The other one we denote by

τ(∆−;π).12

2.15. Some well-known ways of obtaining unitarizability

The standard way of obtaining new unitarizable representations from old ones
is by parabolic induction, which preserves unitarity (unitary parabolic induction).

One can also deduce unitarizability in the opposite direction. Namely, if θ is an
irreducible hermitian representation of a Levi subgroup M of a parabolic subgroup
P of a reductive group G, and if IndGP (θ) is irreducible and unitarizable, then θ is
unitarizable. This method of proving unitarizability will be called unitary parabolic
reduction.

A third way of proving unitarizability is by considering limits. If πn is a se-
quence of irreducible unitarizable representations of a reductive group G, τi irre-
ducible representations of G and mi ∈ Z>0 such that distribution characters Θπn

of πn converge pointwise to
∑
imiΘτi , then all τi are unitarizable ([35]).

A fourth way of proving unitarizability is by considering families. If a continu-
ous family of irreducible hermitian representations of a reductive groups G contains
at least one unitarizable representation, then all representations in the family are
unitarizable. (For a definition of continuous family of representation see [58, §3
(b)].)

Furthermore, if a continuous family of irreducible hermitian representations is
parameterized by unbounded set of unramified parameters, then all the represen-
tations in the family are non-unitarizable (see [51] for more details).

The above methods of proving unitarizability can be easily modified for proving
non-unitarizability.

12Note that τ(∆−;π) is not related to the representations of type λ(c; ρ)−. Furthermore,
note that if π is a cuspidal representation σ, then τ(∆±;π) = δ(∆±;π).
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2.15.1. We will use the following elementary, but powerful, consequence of
unitarizability.

Lemma 2.12. Let P be a parabolic subgroup of a reductive group G over a non-
archimedean local field. Let σ be an irreducible representation of the Levi part M of
P and let Π = IndGP σ. Assume that σ or σt is unitarizable. Then, the length ` of Π
is at most the multiplicity m of σ in the Jacquet module JP (Π). Moreover, if ` = m,

then there exists a direct summand of JP (Π) isomorphic to m · σ =

m︷ ︸︸ ︷
σ ⊕ · · · ⊕ σ.

Proof. Using duality, it is enough to consider the case where σ unitarizable. In
this case Π is unitarizable, hence semisimple and therefore `(Π) ≤ dim HomG(Π,Π)
which by Frobenius reciprocity is equal dim HomM (JP (Π), σ) ≤ m.

Moreover, if ` = m then necessarily m = dim HomM (JP (Π), σ). Upon replacing
σ by its contragredient and P by an opposite parabolic, we also get that m =
dim HomM (σ, JP (Π)). Therefore,

ω :=
∑

ϕ∈HomM (σ,JP (Π))

Im(ϕ) ∼= m · σ and JP (Π) = ω ⊕
⋂

ϕ∈HomM (JP (Π),σ)

Kerϕ

as claimed. �

2.16. Reduction of unitarizability to the weakly real case

π ∈ Irrcl is called weakly real if it is a subquotient of a representation of the
form

νr1ρ1 × · · · × νrkρk o σ,

where ρi ∈ C satisfy ρi ∼= ρi ,̌ ri ∈ R and σ ∈ Ccl. Now we recall [63, Theorem 4.2
(i)]:

Theorem 2.13. For any unitarizable π ∈ Irrcl is unitarizable there exist a
unitarizable θ ∈ Irr and a weakly real unitarizable π′ ∈ Irrcl such that

π ∼= θ o π′.

Note that [63, Theorem 4.2 (ii)] gives a more precise reduction then the above
theorem. Since [55, Theorm 7.5] (which we recall below) gives a classification of
unitary duals of general linear groups, the above theorem reduces the unitarizability
problem for classical p-adic groups to the weakly real case.

For δ ∈ Du and m ≥ 1 denote by u(δ,m) the unique irreducible quotient of

ν
m−1

2 δ×νm−1
2 −1δ×· · ·×ν−m−1

2 δ, which is called a Speh representation. Let Brigid
be the set of all Speh representations, and

B = B(F ) = Brigid ∪ {νασ × ν−aσ;σ ∈ Brigid, 0 < α < 1/2}.

Now the following simple theorem solves the unitarizability for archimedean and
non-archimedean general linear groups in the uniform way:

Theorem 2.14. The mapping (σ1, . . . , σk) 7→ σ1 × · · · × σk defines a bijection
between M(B) and ∪n≥0 GL(n, F )̂ .
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2.17. Computing irreducible subquotients

The following simple lemma will be often used for computing irreducible sub-
quotients.

Lemma 2.15.

(1) Suppose that we have a diagram

0 // Σ2
// Σ1

����

// Π // 0

Σ

where the top row is a short exact sequence. Assume that Σ is finitely
generated and Σ 6≤ Σ2. Then, the cosocle of Σ and the cosocle of Π have
a common irreducible constituent. In particular, if the cosocle of Π is
irreducible, then it occurs in the cosocle of Σ.

(2) Suppose that we have a diagram

0 // Σ2
// Σ1

����

// Π // 0

Σ

where the top row is a short exact sequence. Assume that Σ2 is finitely
generated and Σ 6≤ Π. Then, Σ and the cosocle of Σ2 have a common
irreducible subquotient. In particular, if the cosocle of Σ2 is irreducible,
then it occurs in Σ.

�

Indeed, in the first part we get a map Π � Σ where Σ is the quotient of Σ by
the image of the composition Σ2 → Σ1 → Σ. In the second part, the composition
Σ2 → Σ1 → Σ is non-zero.

Remark 2.16. Let ω = δ([−a, a](ρ)) be a square-integrable representation and
let π be an irreducible subquotient of Π. Then, the multiplicity of ω⊗ π in µ∗(ωo
Π) = M∗(ω) o µ∗(Π) is equal the multiplicity of ω ⊗ π in(

2

a∑
i=−a

δ([−i, a](ρ))⊗ δ([i+ 1, a](ρ)) + 1⊗ ω
)
o µ∗(Π)



CHAPTER 3

Unitarizability in the Critical Case (Corank 1 and
2)

From now until §6 we fix ρ ∈ Csd and σ ∈ Ccl. Let α = αρ,σ ∈ 1
2Z≥0 be such

that

[α](ρ) o σ (= ναρo σ)

is reducible. Recall that we set η = 0 if α ∈ Z and η = 1 otherwise so that
α− 1

2η ∈ Z≥0.
For simplicity, we suppress the superscript ρ from the notation. Thus, we write

[x] instead of [x](ρ).
For any k ≥ 0 and x = (x1, . . . , xk) ∈ Rk, consider the induced representation

Πx := [x1]× · · · × [xk] o σ.

We say that x is critical if {[x1], . . . , [xk]} forms a segment of cuspidal represen-
tations (possibly with multiplicities) that contains the reducibility point [α]. The
goal of this and the following chapters is to study the irreducible subquotients of
Πx and to determine which ones are unitarizable in the critical case for k ≤ 3.

Since the composition series of Πx depends only on the orbit of x under signed
permutations, we may assume without loss of generality that x ∈ Rk++, where

Rk++ := {x ∈ Rk : 0 ≤ x1 ≤ · · · ≤ xk},

and x is critical. Later on, we shall also use the notation

Rk+ := {x ∈ Rk : 0 ≤ x1, . . . , xk}.

3.1. Extreme cases

Suppose that the xi’s are distinct. We have two extreme cases in this setting.
The first is when x1 = α. Then, Πx1,...,xn is a regular (multiplicity one) representa-
tion of length 2n. All but two of its irreducible subquotients are non-unitarizable,
the exceptions being the generalized Steinberg representation δ([α, α + n − 1];σ)
and its dual.

Now we shall consider the opposite extreme, when

xn = α and x1 > 0.

Once again, one easily sees that Πx1,...,xn is a regular representation of length 2n.
We claim that all irreducible subquotients are unitarizable.

It is also easy to describe the Langlands parameters of all the irreducible sub-
quotients. The tempered parts of Langlands parameters are precisely

δ([να−k+1ρ], . . . , [ναρ];σ), k = 0, . . . , n.

27
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Then, one gets GL-parts of Langlands parameters from partitions of the remaining
exponents

να−n+1ρ, να−n+1ρ, . . . , να−kρ.

To see that all the irreducible subquotient are unitarizable we argue by induc-
tion on n. The case n = 0 is trivial. Suppose that n > 0 and take any irreducible
subquotient π of Π(x1,...,xn). Clearly, there exists an irreducible subquotient π− of

Πx2,...,xn such that π ≤ [α−n+1]oπ−. Observe that x2 ≥ 3
2 , and that by Jantzen

decomposition, all the representations

[x] o π−, 0 ≤ x < α− 1

are irreducible (they are hermitian, since ρ is F ′/F -selfdual). Since π− is unita-
rizable by the inductive hypothesis, we have complementary series, and π is at the
end of these complementary series. Therefore, it is unitarizable.

3.2. Tempered representations in critical case, corank ≤ 3

We first describe the irreducible tempered representations that are subquotients
of

Π(x1,...,xk), 0 ≤ x1 ≤ · · · ≤ xk, k ≤ 3.

(It is easy to reduce the general case to the critical case.)
First we make a simple observation.
It is a direct consequence of the classification of square-integrable representa-

tions in [39] (cf. [66], in particular §34) that if α ∈ Z and x1 > 0 or if α /∈ Z and
x2 >

1
2 then every irreducible tempered subquotients of Πx will be strongly positive

(and in particular, square-integrable).
First we shall list all the square-integrable representations. A direct conse-

quence of [39] is that if a square-integrable π is a subquotient of Πx, then x is
critical.

The classification of square integral representations in [39] easily implies the
following

Proposition 3.1. The following are the square-integrable representations in
the cases k ≤ 3.

(1) k = 0 : σ itself.
(2) k = 1 : The representations

δ([α];σ), α > 0.

(3) k = 2 :
(a) δs.p.([α− 1], [α];σ), α > 1.
(b) δ([α, α+ 1];σ), α > 0.
(c) δ([0, 1]±;σ), α = 0.

(4) k = 3 :
(a) δs.p.([α− 2], [α− 1], [α];σ), α > 2.
(b) δs.p.([α− 1], [α, α+ 1];σ), α > 1.1

(c) δ([α, α+ 2];σ), α > 0.
(d) δ([− 1

2 ,
3
2 ]±;σ), α = 1

2 .
(e) δ([0, 2]±;σ), α = 0.

�

1The socle of [α− 1]× δ([α, α+ 1]) o σ.
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Now we shall describe the non-square-integrable tempered subquotients of rep-
resentations Π(x1,...,xk), k ≤ 3, in the critical case.

Proposition 3.2. Suppose that we are in the critical case (i.e. {x1, . . . , xk}
is a Z-segment in Z or 1

2 + Z, with possible multiplicities, which contains α). The
following are the tempered, but non square-integrable, irreducible subquotients of Πx

for k ≤ 3.

(1) k = 1 :

τ±, for α = 0,

where

ρo σ = τ+ ⊕ τ−.2

(2) k = 2 :
(a) τ([0]±; δ([1];σ)), α = 1, where

[0] o δ([1];σ) = τ([0]+; δ([1];σ))⊕ τ([0]−; δ([1];σ)).3

(b) δ([− 1
2 ,

1
2 ]±;σ), α = 1

2 , where

δ([− 1
2 ,

1
2 ]) o σ = δ([− 1

2 ,
1
2 ]+;σ)⊕ δ([− 1

2 ,
1
2 ]−;σ).4

(c) [0] o τ±, α = 0, where

ρo σ = τ+ ⊕ τ−.

(3) k = 3 :
(a) [0]× [0] o τ±, α = 0 ([0] o σ = τ+ ⊕ τ−).
(b) [0] o τ([0]±; δ([1];σ)), α = 1.
(c) δ([−1, 1]±;σ), α = 1, where

δ([−1, 1]) o σ = δ([−1, 1]+;σ)⊕ δ([−1, 1]−;σ).5

(d) δ([−1, 1]±;σ), α = 0, where

δ([−1, 1]) o σ = δ([−1, 1]+;σ)⊕ δ([−1, 1]−;σ).6

(e) [0] o τ([0]±; δ([1];σ)), α = 1.
(f) δ([− 1

2 ,
1
2 ]) o δ([ 1

2 ];σ), α = 1
2 .

(g) τ([0]±; δs.p.([1], [2];σ)), α = 2, where

[0] o δs.p.([1], [2];σ) = τ([0]+; δs.p.([1], [2];σ))⊕ τ([0]−; δs.p.([1], [2];σ)).

(h) τ([0]±; δ([1, 2];σ)), α = 1, where

[0] o δ([1, 2];σ) = τ([0]+; δ([1, 2];σ))⊕ τ([0]−; δ([1, 2];σ)).7

(i) [0] o δ([0, 1]±;σ), α = 0.

�

2We shall denote τ± also by δ([0]±;σ).
3+ sign corresponds to the representation with δ([0, 1])⊗ σ in its Jacquet module.
4δ([− 1

2
, 1
2

]+;σ) has [ 1
2

]× [ 1
2

]⊗ σ in its Jacquet module
5δ([−1, 1]+;σ) is characterised by the property that it has δ([0, 1]) × [1] ⊗ σ in its Jacquet

module
6δ([−1, 1]±;σ) is characterised by the property that it has [1]× [1]⊗τ± in its Jacquet module
7τ([0]+; δs.p.([1], [2];σ)) is characterised by the property that it embeds into a representation

of the form [1] o λ (see [68]).
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Remark 3.3. For the description of composition series of representations Πx,
k ≤ 3 in the critical case, we will use the following non-critical irreducible tempered
representation

(1) k = 1 :
[0] o σ, α ∈ {1, 2} (for Π(0,1,2) as well as for Π(0,1,1) and Π(0,0,1) if

α = 1).
(2) k = 2 :

(a) [0]× [0] o σ, α = 1 (for Π(0,0,1)).

(b) δ([− 1
2 ,

1
2 ]) o σ, α = 3

2 (for Π( 1
2 ,

1
2 ,

3
2 )).

(c) [0] o δ([2];σ), α = 2 (for Π(0,1,2)).

With the above description it is easy to describe JH(Πx) for any given x ∈ R3.
Henceforth, we will do so in the critical case without further explanation.

3.3. Composition series in critical case, corank one

For the rest of this chapter we deal with the case k ≤ 2 (and x critical).
We start with the corank one case.

3.3.1. x = (α) and α ≥ 1
2 .

Proposition 3.4. Suppose that α ≥ 1
2 . Then,

(1) In the Grothendieck group we have

Π(α) = [α] o σ = L([α];σ) + δ([α];σ).

(2) Both L([α];σ) and δ([α];σ) are unitarizable.
(3) L([α];σ)t = δ([α];σ).
(4) We have

µ∗(δ([α];σ)) = 1⊗ δ([α];σ) + [α]⊗ σ, µ∗(L([α];σ)) = 1⊗ L([α];σ)) + [−α]⊗ σ.

�

Moreover, by Proposition 2.5 8

(3.1) Jordρ(δ([α];σ)) = {η + 1, η + 3, . . . , 2α− 3, 2α+ 1}.

3.3.2. x = (α) and α = 0. In this case [0]oσ is unitarizable and decomposes
as a sum of two irreducible tempered representations

[0] o σ = δ([0]+;σ)⊕ δ([0]−;σ).

We have

µ∗(δ([0]±;σ)) = 1⊗ δ([0]±;σ) + [0]⊗ σ.

Note that

δ([0]+;σ)t = δ([0]−;σ).

8In the sequel we shall conclude Jordan blocks from this proposition unless otherwise
indicated.
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3.4. Composition series in critical case, corank two

3.4.1. x = (α, α+ 1) and α ≥ 1
2 .

Proposition 3.5. Suppose that α ≥ 1
2 . Then,

(1) In the Grothendieck group we have

Π(α,α+1) = [α+ 1]× [α] o σ = π1 + π2 + π3 + π4

where

π1 = L([α+ 1], [α];σ), π2 = L([α+ 1]; δ([α];σ))

π3 = L([α, α+ 1];σ), π4 = δ([α, α+ 1];σ).

(2) The representations π1 and π4 are unitarizable and πt1 = π4.
(3) The representations π2 and π3 are not unitarizable and πt2 = π3.

�

We have

µ∗(π1) = 1⊗ π1 + [−α− 1]⊗ L([α];σ) + L([−α− 1,−α])⊗ σ.(3.2a)

µ∗(π2) = 1⊗ π2 + [−α− 1]⊗ δ([α];σ) + [α]⊗ [α+ 1] o σ

+ [α]× [−α− 1]⊗ σ + L([α], [α+ 1])⊗ σ,
(3.2b)

µ∗(π3) = 1⊗ π3 + [−α]⊗ [α+ 1] o σ + [α+ 1]⊗ L([α];σ)

+ δ([−α− 1,−α])⊗ σ + [−α]× [α+ 1]⊗ σ,
(3.2c)

µ∗(π4) = 1⊗ π4 + [α+ 1]⊗ δ([α];σ) + δ([α, α+ 1])⊗ σ.(3.2d)

One easily gets that

(3.3) Jordρ(π4) = {η + 1, η + 3, . . . , 2α− 3, 2α+ 3}.
Furthermore,

[α+ 1] o L([α];σ) = π1 + π3,

[α+ 1] o δ([α];σ) = π2 + π4,

L([α], [α+ 1]) o σ = π1 + π2,

δ([α, α+ 1]) o σ = π3 + π4.

3.4.2. x = (α, α) and α ≥ 1.

Proposition 3.6. Suppose that α ≥ 1. Then,

(1) In the Grothendieck group we have

Π(α,α) = π1 + πt1

where

π1 = [α] o δ([α];σ) = L([α]; δ([α];σ)), πt1 = [α] o L([α];σ) = L([α], [α];σ).

(2) Neither π1 nor πt1 is unitarizable.

Clearly,
Π(α,α) = [α] o δ([α];σ) + [α] o L([α];σ).

Since [α]o δ([α];σ) and [α]oL([α];σ) are irreducible by (4) of Proposition 2.4 and
(3.1), we obtain the first part.

To show that π1 is non-unitarizable consider the family of representations

γs = [s] o δ([α];σ), s ∈ R.
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It is irreducible for α ≤ s < α + 1 and γα+1 admits a non-unitarizable irreducible
quotient by Proposition 3.5. Therefore, π1 = γα is not unitarizable. A similar
argument applies to πt1.

3.4.3. x = (α− 1, α) and α ≥ 3
2 .

Proposition 3.7. Assume α ≥ 3
2 . Then,

(1) In the Grothendieck group

Π(α−1,α) = π1 + π2 + π3 + π4

where

π1 = L([α− 1, α];σ), π2 = L([α− 1]; δ([α];σ)),

π3 = L([α− 1], [α];σ), π4 = δs.p.([α− 1], [α];σ).

(2) π1, π2, π3, π4 are unitarizable.
(3) πt4 = π1, πt3 = π2.

The representation Π(α−1,α) is regular and admits the following two decompo-
sitions in the Grothendieck group

Π(α−1,α) = [α]× [α− 1] o σ = Π1 + Π2 = Π3 + Π4

where

Π1 = [α− 1] o L([α];σ), Π2 = [α− 1] o δ([α];σ),

Π3 = δ([α− 1, α]) o σ, Π4 = L([α− 1], [α]) o σ.

Moreover, we have the decompositions

(3.4) Π3 = π1 + π2, Π4 = π3 + π4.

This further implies

Π1 = π1 + π3, Π2 = π2 + π4

Furthermore,

µ∗(π1) = 1⊗ π1 + [−α+ 1]⊗ L([α];σ) + δ([−α,−α+ 1])⊗ σ,
µ∗(π2) = 1⊗ π2 + [α]⊗ [α− 1] o σ + [−α+ 1]⊗ δ([α];σ)

+ [−α+ 1]× [α]⊗ σ + δ([α− 1, α])⊗ σ,
µ∗(π3) = 1⊗ π3 + [−α]⊗ [α− 1] o σ + [α− 1]⊗ L([α];σ)

+ [α− 1]× [−α]⊗ σ + L([−α], [−α+ 1])⊗ σ,
µ∗(π4) = 1⊗ π4 + [α− 1]⊗ δ([α];σ) + L([α− 1], [α])⊗ σ.

We also note that

Jordρ(π4) = {η + 1, η + 3, . . . , 2α− 5, 2α− 1, 2α+ 1},

and the partially defined function ε pertaining to π4 takes opposite values at 2α−1
and 2α+ 1 (use the fact that π4 is strongly positive; see [39]).
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3.4.4. x = (0, 1) and α = 1.

Proposition 3.8. Suppose that α = 1. Then,

(1) In the Grothendieck group we have

Π(0,1) = π1 + π2 + π+
3 + π−3

where

π1 = L([1]; [0] o σ), π2 = L([0, 1];σ), π±3 = τ([0]±; δ([1];σ)).

(2) π1, π2, π
±
3 are unitarizable.

(3) πt1 = π+
3 and πt2 = π−3 .

Note that
Π(0,1) = Π1 + Π2

where
Π1 = [0] o L([1];σ), Π2 = [0] o δ([1];σ)

and
Π1 = π1 + π2, Π2 = π+

3 + π−3 .

Clearly, Π1 and Π2 are unitarizable.
Moreover,

(3.6) δ([0, 1]) o σ = π2 + π+
3 , L([0], [1]) o σ = π1 + π−3 .

Finally,

µ∗(π1) = 1⊗ π1 + [−1]⊗ [0] o σ + [0]⊗ L([1];σ)

+ 2L([−1], [0])⊗ σ + δ([−1, 0])⊗ σ,
(3.7a)

µ∗(π2) = 1⊗ π2 + [0]⊗ L([1];σ) + δ([−1, 0])⊗ σ(3.7b)

µ∗(π+
3 ) = 1⊗ π+

3 + [1]⊗ [0] o σ + [0]⊗ δ([1];σ)

+ 2δ([0, 1])⊗ σ + L([0], [1])⊗ σ,
(3.7c)

µ∗(π−3 ) = 1⊗ π−3 + [0]⊗ δ([1];σ) + L([0], [1])⊗ σ.(3.7d)

3.4.5. x = ( 1
2 ,

1
2 ) and α = 1

2 .

Proposition 3.9. Suppose α = 1
2 . Then,

(1) In the Grothendieck group we have

Π( 1
2 ,

1
2 ) = π1 + π2 + π3 + π4

where

π1 = δ([− 1
2 ,

1
2 ]+;σ), π2 = δ([− 1

2 ,
1
2 ]−;σ),

π3 = L([ 1
2 ], [ 1

2 ];σ), π4 = L([ 1
2 ]; δ([ 1

2 ];σ)).

(2) π1, π2, π3, π4 are unitarizable.
(3) πt1 = π3, πt2 = π4.

We have

δ([− 1
2 ,

1
2 ]) o σ = π1 + π2, L([− 1

2 ], [ 1
2 ]) o σ = π3 + π4

and also
[ 1
2 ] o δ([ 1

2 ];σ) = π1 + π4, [ 1
2 ] o L([ 1

2 ];σ) = π2 + π3.

This implies that πt1 = π3, πt2 = π4.
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Finally,

µ∗(π1) = 1⊗ π1 + [ 1
2 ]⊗ [ 1

2 ] o σ + [ 1
2 ]⊗ δ([ 1

2 ];σ)

+ δ([− 1
2 ,

1
2 ])⊗ σ + [ 1

2 ]× [ 1
2 ]⊗ σ,

µ∗(π2) = 1⊗ π2 + [ 1
2 ]⊗ L([ 1

2 ];σ) + δ([− 1
2 ,

1
2 ]])⊗ σ,

µ∗(π3) = 1⊗ π3 + [− 1
2 ]⊗ [ 1

2 ] o σ + [− 1
2 ]⊗ L([ 1

2 ];σ)

+ L([− 1
2 ], [ 1

2 ]])⊗ σ + [− 1
2 ]× [− 1

2 ]⊗ σ,
µ∗(π4) = 1⊗ π4 + [− 1

2 ]⊗ δ([ 1
2 ];σ) + L([− 1

2 ], [ 1
2 ]])⊗ σ.

3.4.6. x = (0, 1) and α = 0.

Proposition 3.10. Suppose that α = 0. Then,

(1) In the Grothendieck group we have

Π(0,1) = π+
1 + π−1 + 2π2 + π+

3 + π−3 ,

where

π±1 = L([1]; δ([0]±;σ)), π2 = L([0, 1];σ), π±3 = δ([0, 1]±;σ).

(2) All the irreducible subquotients of Π(0,1) are unitarizable.
(3) We have

(π±1 )t = π∓3 , πt2 = π2.

(4) Jordρ(π
±
3 ) = {1, 3}.

Proof. By Propositions 3.1 and 3.2 it follow that {π+
1 , π

−
1 , π2, π

+
3 , π

−
3 } is the

Jordan-Hölder series of Π(0,1). Note that

(3.9) Π(0,1) = Π1 + Π2 = Π+
3 + Π−3 ,

where

Π1 = δ([0, 1]) o σ, Π2 = L([0], [1]) o σ, Π±3 = [1] o δ([0]±;σ).

Observe that (2.16) implies that π±3 and π2 are the only possible subquotients of Π1.
Since Πt

1 = Π2 and Π(0,1) has length ≥ 5, we conclude that all three representations
are subquotients, which further implies that the Jordan-Hölder series of Π2 consists
of 3 irreducible representations. Since each π±3 has in its Jacquet module δ([0, 1])⊗σ,
and the multiplicity of it in the Jacquet module of Π(0,1) is two, we conclude that

the multiplicity of each π±3 in Π(0,1) is one. Therefore, Π1 = π+
3 + π−3 + π2. Both

π±1 have multiplicity one in Π(0,1), which implies Π2 = π+
1 + π−1 + π2. This implies

(1) (see [46, §5] for the case of Sp(4)).
Multiplicity one of π±1 and π±3 in Π(0,1), together with (3.9), imply πt2 = π2.

Each of π±3 is a subquotient of Π±3 (by definition of π±3 ). Also π±1 is a subquotient.
This implies Π±3 = π±1 + π2 + π±3 . Observe that (π±1 )t 6= π±1 and (π±1 )t 6= π∓1
(since Πt

1 = Π2), as well as (π±1 )t 6= π2 (since πt2 = π2). Now (Π±3 )t = Π∓3 implies
(π±1 )t = π∓3 . This completes the proof of (3).

All the irreducible subquotients of Π(0,1) are unitarizable, since they are sub-

quotients of ends of the complementary series starting with δ([− 1
2 ,

1
2 ]) o σ or

L([− 1
2 ], [ 1

2 ]) o σ.
Proposition 2.5 implies (4). The proof is now complete. �
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Observe that we have proved above the following equalities (which we shall use
later)

(3.10) Π±3 = π±1 + π2 + π±3 , Π1 = π+
3 + π−3 + π2, Π2 = π+

1 + π−1 + π2.

Further, we directly get

µ∗(π±3 ) = 1⊗ π±3 + [1]⊗ δ([0]±;σ) + δ([0, 1])⊗ σ.(3.11a)

µ∗(π±1 ) = 1⊗ π±1 + [−1]⊗ δ([0]±;σ) + L([−1], [0])⊗ σ.(3.11b)

µ∗(π2) = 1⊗ π2 + [0]⊗ [1] o σ + δ([−1, 0])⊗ σ + L([0], [1])⊗ σ.(3.11c)

3.4.7. x = (0, 0) and α = 0. Here Π(0,0) is a unitarizable tempered represen-
tation of length two which decomposes as

Π(0,0)[0] = [0] o δ([0]+;σ)⊕ [0] o δ([0]−;σ).

We have
([0] o δ([0]+;σ))t = [0] o δ([0]−;σ).





CHAPTER 4

Unitarizability in the Critical Case (Corank 3,
α > 1)

In this chapter we determine the unitarizability of the irreducible subquotients
of Πx in the critical case for k = 3 in all cases where α > 1 and in many cases
where α = 1

2 or 1. Below we analyse various cases of x.

4.1. x = (α, α+ 1, α+ 2) and α ≥ 1
2

Recall (see §2.9) that the representation

Π(α,α+1.α+2)

is multiplicity free of length 8 and precisely two of its irreducible subquotients, are
unitarizable, namely, the generalized Steinberg representation and its dual, i.e.

δ([α, α+ 2];σ), L([α+ 2], [α+ 1], [α];σ).

Note that

Π(α,α+1,α+2) = Π1 + Π2 + Π3 + Π4

where

Π1 = [α+ 2] o L([α+ 1], [α];σ), Π2 = [α+ 2] o L([α+ 1]; δ([α];σ))

Π3 = [α+ 2] o L([α, α+ 1];σ), Π4 = [α+ 2] o δ([α, α+ 1];σ).

Each of Π1,Π2,Π3,Π4 is reducible. The representation L([α + 2], [α + 1], [α];σ) is
a quotient of Π1 and δ([α, α+ 2];σ) is a subrepresentation of Π4.

We list below all eight irreducible subquotients of Π(α,α+1,α+2) and describe
how DL duality acts on them

δ([α, α+ 2];σ)t = L([α+ 2], [α+ 1], [α];σ),

L([α+ 2]; δ([α, α+ 1];σ))t = L([α+ 1, α+ 2], [α];σ),

L([α+ 1, α+ 2]; δ([α];σ))t = L([α+ 2], [α, α+ 1];σ),

L([α+ 1], [α+ 2]; δ([α];σ))t = L([α, α+ 2];σ).

Obviously both δ([α+ 1, α+ 2])o δ([α];σ) and δ([α+ 1, α+ 2])oL([α];σ) reduce.

4.2. x = (α, α+ 1, α+ 1) and α ≥ 1/2

Proposition 4.1. Suppose α ≥ 1
2 . Then,

(1) In the Grothendieck group we have

Π(α,α+1,α+1) = π1 + π2 + π3 + π4

37
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where

π1 = [α+ 1] o L([α+ 1], [α];σ), π2 = [α+ 1] o L([α+ 1]; δ([α];σ)),

π3 = [α+ 1] o L([α, α+ 1];σ), π4 = [α+ 1] o δ([α, α+ 1];σ)

are irreducible.
(2) None of π1, π2, π3, π4 is unitarizable.
(3) πt1 = π4, πt2 = π3.

Proof. Recall that

Jordρ(δ([α, α+ 1];σ)) = {η + 1, η + 3, . . . , 2α− 3, 2α+ 3}.
By (4) of Proposition 2.4, π4 and hence also π1 = πt4, is irreducible.

Furthermore, π3 is irreducible by Corollary 2.9. Hence, π2 = πt3 is also irre-
ducible.

To show that π1 is non-unitarizable consider the family

γs = [s] o L([α+ 1], [α];σ), s ∈ R.
It is irreducible for α+1 ≤ s < α+2 and γα+2 contains a non-unitarizable quotient
(see §4.1). Hence, π1 = γα+1 cannot be unitarizable. A similar argument applies
to π2, π3, π4. �

4.3. x = (α, α, α+ 1) and α ≥ 1

Proposition 4.2. Let α ≥ 1. Then,

(1) We have

Π(α,α,α+1) = π1 + π2 + π3 + π4 + 2π5

where

π1 = L([α], [α], [α+ 1];σ), π2 = L([α]; δ([α, α+ 1];σ)),

π3 = L([α], [α+ 1]; δ([α];σ)), π4 = L([α], [α, α+ 1];σ),

π5 = L([α, α+ 1]; δ([α];σ)).

(2) π2 = πt1, π4 = πt3 and πt5 = π5.
(3) We have

π1 = [α] o L([α+ 1], [α];σ), π2 = [α] o δ([α, α+ 1];σ),

π3 = L([α], [α+ 1]) o δ([α];σ), π4 = δ([α, α+ 1]) o L([α];σ).

(4) None of π1, π2, π3, π4, π5 is unitarizable.
(5) δ([α, α+ 1]) o δ([α];σ) = π2 + π5, L([α], [α+ 1]) o L([α];σ) = π1 + π5.

Proof. Write
Π(α,α,α+1) = Π1 + Π2 + Π3 + Π4

where

Π1 = δ([α, α+ 1]) o L([α];σ), Π2 = L([α], [α+ 1]) o L([α];σ)

Π3 = δ([α, α+ 1]) o δ([α];σ), Π4 = L([α], [α+ 1]) o δ([α];σ).

First observe that (4) of Proposition 2.4 and (3.3) imply that [α]oδ([α, α+1];σ)
is irreducible. Therefore, also its dual is irreducible. This implies that

π1 = [α] o L([α+ 1], [α];σ) and π2 = [α] o δ([α, α+ 1];σ)

(using Proposition 2.1). It also follows that πt1 = π2.
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Furthermore, both π1 and π2 have multiplicity one in Π(α,α,α+1).
Consider now Π1. By (2.16), neither π1 nor π3 can be a subquotient of δ([α, α+

1])× [α] o σ, let alone of Π1. We show that π5 6≤ Π1. Otherwise, we would get

δ([−α− 1,−α])× [α] ≤ (δ([−α− 1,−α]) + [−α]× [α+ 1] + δ([α, α+ 1]))× [−α],

which obviously cannot be sustained.
It remains to see that π2 6≤ Π1. Assume otherwise. Then,

([α] + [−α])× δ([α, α+ 1])

≤ (δ([−α− 1,−α]) + [−α]× [α+ 1] + δ([α, α+ 1]))× [−α],

which obviously does not hold. Thus, Π1 is irreducible and therefore equals π4. By
applying t we get

π3 = Π4.

This implies that πt3 = π4, which further implies that πt5 = π5.
The non-unitarizability of π1, π2 is proved as in §4.2 using Proposition 4.1

part 2 by deforming [α] to [α + 1]. Similarly, the non-unitarizability of π3, π4 is
obtained by deforming L([α], [α + 1]) and δ([α, α + 1]) to L([α + 1], [α + 2]) and
δ([α + 1, α + 2]) respectively and using the fact that each of the representations
L([α+1], [α+2])oδ([α];σ) and δ([α+1, α+2])oL([α];σ) admit a non-unitarizable
subquotient (using Proposition 2.1 and the analysis of §4.1).

It remains to show that π5 is not unitarizable.
Clearly, π1 is a quotient of L([α], [α + 1]) o L([α];σ) and occurs there with

multiplicity one. Hence, π2 occurs with multiplicity one in Π3. Using (2.16) we
infer that

(4.1) Π3 = π5 + π2.

Hence, by duality, Π2 = π5 + π1. All in all,

Π(α,α,α+1) = π1 + π2 + π3 + π4 + 2π5.

Consider

Γ = δ1 o π5 where δ1 = δ([−(α− 1), α− 1]).

Then, Γ admits the following two irreducible subquotients (by Proposition 2.1)

Γ± := L([α, α+ 1]; τ([−(α− 1), α− 1]±; δ([α];σ))).

Let

Γ0 := L([−(α− 1), α+ 1]; δ([α];σ)).

We claim that Γ0 ≤ Γ, so that the length of Γ is at least three.
Indeed,

Γ0 ≤ δ([−(α− 1), α+ 1]) o δ([α];σ) ≤ δ1 ×Π3.

while

δ1 ×Π3 = Γ + δ1 o π2

by (4.1). On the other hand,

Γ0 6≤ δ1 o π2

since otherwise

Γ0 ≤ [α]× δ1 o δ([α, α+ 1];σ)

and this is impossible by (2.16). Therefore, Γ0 ≤ Γ as claimed.
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Suppose on the contrary that π5 is unitarizable. Then, by Lemma 2.12, the
multiplicity of δ1 ⊗ π5 in µ∗(Γ) would be at least three. Recall

µ∗(Γ) = M∗(δ1) o µ∗(π5).

Now δ1⊗1 has multiplicity two in M∗(δ1). On the other hand, since the support of
π5 is disjoint from that of δ1, no other term from M∗(δ1) can contribute. Therefore,
the multiplicity of δ1 ⊗ π5 in µ∗(Γ) is two. This contradiction completes the proof
of the proposition. �

4.4. x = (α, α, α) and α ≥ 1

Consider

Π(α,α,α) = π1 + π2

where

π1 = [α]× [α] o L([α];σ), π2 = [α]× [α] o δ([α];σ).

The representation π2 is irreducible by (4) of Proposition 2.4, (3.1) and the factor-
ization of the long intertwining operator in the Langlands classification. (Here we
use that α > 1

2 .) Applying the DL involution, we get that π1 = πt2 is irreducible as
well.

The non-unitarizability of π1 (and similarly π2) follows by deforming [α] to
[α+ 1] and the fact that [α+ 1]× [α]oL([α];σ) admits non-unitarizable quotients
(See Proposition 4.2.) Alternatively, we can use the fact that π1

∼= [α] × [−α] o
L([α];σ) and use unitary parabolic reduction (since [α]× [−α] is hermitian but not
unitarizable).

4.5. x = (α− 1, α, α+ 1) and α > 1

Recall that the representation [α−1]×δ([α, α+1])oσ has an irreducible socle,
which is a strongly positive square-integrable representation (see [62] for details of
the description of the classification of strongly positive representations pertaining
to this paper). This representation was denoted by δs.p.([α− 1], [α, α+ 1];σ).

Proposition 4.3. Suppose α > 1. Then,

(1) In the Grothendieck group we have

Π(α−1,α,α+1) = π1 + · · ·+ π8

where

π1 = δs.p.([α− 1], [α, α+ 1];σ), π2 = L([α+ 1], [α− 1, α];σ),

π3 = L([α− 1]; δ([α, α+ 1];σ)), π4 = L([α+ 1], [α], [α− 1];σ),

π5 = L([α+ 1]; δs.p.([α− 1], [α];σ)), π6 = L([α− 1, α+ 1];σ),

π7 = L([α+ 1], [α− 1]; δ([α];σ)), π8 = L([α, α+ 1], [α− 1];σ).

(2) π2 = πt1, π4 = πt3, π6 = πt5, π8 = πt7.
(3) The representations π1, π2, π3, π4 are unitarizable.
(4) The representations π5, π6, π7, π8 are not unitarizable.

Proof of first 3 parts. Note that Π(α−1,α,α+1) is regular (i.e., all Jacquet
modules of Π(α−1,α,α+1), including Π(α−1,α,α+1) itself, are multiplicity free). The
first part therefore follows from the description of JH(Π(α−1,α,α+1)).
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By Proposition 3.5 we have (in the Grothendieck group)

(4.2) Π(α−1,α,α+1) = Π1 + Π2 + Π3 + Π4

where

Π1 = [α− 1] o L([α+ 1], [α];σ), Π2 = [α− 1] o L([α+ 1]; δ([α];σ))

Π3 = Πt
2 = [α− 1] o L([α, α+ 1];σ), Π4 = Πt

1 = [α− 1] o δ([α, α+ 1];σ).

Note that Π1 and Π4 are the extremities of complementary series and hence, all
their irreducible subquotients are unitarizable. Furthermore, Π4 is reducible (by
(5) of Proposition 2.4 and (3.3)). Hence, Π1 is reducible.

Using (2.16) and the first part we get

(4.3) Π4 = π3 + π1.

Applying the DL involution, we get

(4.4) Π1 = πt3 + πt1.

Hence, πt3 and πt1 are unitarizable.
We easily see that each of πi, i 6= 2 has at least one factor with positive

exponent. This implies
πt1 = π2.

We know by Proposition 2.1 that

π4 ≤ Π1.

The above two facts imply

(4.5) Π1 = π4 + π2

which further implies
πt3 = π4.

Since Πt
2 = Π3 we deduce from (4.3), (4.5) and the first part that each of Π2,Π3

is of length two.
Consider Π2. Observe that (4.3) and (4.5) imply that π1, π2, π3, π4 6≤ Π2. By

(2.16) and the multiplicity freeness of Π(α−1,α,α+1) we get

(4.6) Π2 = π7 + π5

This further implies

(4.7) Π3 = π8 + π6.

Observe that δ([α− 1, α+ 1])t ⊗ σ ≤ sGL(πt6) and recall that sGL(Π(α−1,α,α+1)) is
multiplicity free. On the other hand,

π5 ↪→ [−α− 1] o δs.p.([α− 1], [α];σ)

↪→ Π(−α−1,α−1,α)
∼= Π(α−1,α,−α−1)

∼= Π(α−1,α,α+1).

Therefore, [α−1]⊗[α]⊗[α+1]⊗σ occurs in the Jacquet module of π5, which implies
(by the transitivity of Jacquet modules) that the same is true for δ([α−1, α+1])t⊗σ.
Therefore,

πt6 = π5

which further implies
πt8 = π7.

This finishes the proof of the proposition. �
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It remains to show the non-unitarizability of π5, π6, π7, π8.

4.5.1. Non-unitarizability of π5 and π6. Let

Π′ = δ([α− 1, α+ 1]) o σ.

By [33, Theorem 4.1 (A2)]

Π′ = π6 + π3.

Let δ1 = δ([−α, α]) and consider

δ1 o Π′ = δ1 o π6 + δ1 o π3.

Clearly, it contains

Γ±1 = L([α− 1, α+ 1]; δ([−α, α]±;σ))

as subquotients. Moreover, since

δ1 ×Π′ ≥ δ([−α, α+ 1])× δ([α− 1, α]) o σ

= δ([−α, α+ 1])× L([α− 1, α];σ) + δ([−α, α+ 1])× L([α− 1]; δ([α];σ)),

δ1 ×Π′ will also contain the following irreducible subquotients

Γ±2 = L([α− 1, α]; δ([−α, α+ 1]±;σ)),

Γ3 = L([−α, α+ 1], [α− 1, α];σ),

Γ4 = L([−α, α+ 1], [α− 1]; δ([α];σ)).

In fact, Γ±1 ,Γ
±
2 ,Γ3,Γ4 are already subquotients of Γ := δ1 o π6, since they cannot

be subquotients of

δ1 o π3.

More precisely, by property of Langlands quotients, each of Γ±1 , Γ3 and Γ4 has a
factor with exponent −α − 1, while δ1 o π3 does not have. Furthermore, each of
sGL(Γ±2 ) admits an irreducible subquotient which has in its support the exponent
−α twice, while δ1 o π3 can have it at most once (see §2.10).

Therefore, the length of Γ is at least 6.
On the other hand, we shall show that the multiplicity of

τ := δ1 ⊗ π6

in µ∗(Γ) is at most 4. By Lemma 2.12, this will imply that π6 and π5 are not
unitarizable.

In fact, we show that the multiplicity of τ in µ∗(δ1×Π′) = M∗(δ1)×M∗(δ([α−
1, α+1]))o(1⊗σ) is four. By remark 2.16 and the formula for M∗(δ([α−1, α+1]))
we need to compute the multiplicity of τ in(

2

α∑
x=−α

δ([−x, α])⊗ δ([x+ 1, α]) + 1⊗ δ1
)
×

( α+1∑
i=α−2

α+1∑
j=i

δ([−i,−α+ 1])× δ([j + 1, α+ 1])⊗ δ([i+ 1, j])
)
o 1⊗ σ.

Only the terms corresponding to j = α + 1 may contribute τ as a subquotient.
One possibility to get τ is to take i = α − 2, for which we must take x = α. This
contributes 2 · δ1 ⊗Π′ which contains τ with multiplicity two.
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Suppose now that i > α−2. Then, the only possible contribution is from i = α
and x = α − 2. Again, this contributes multiplicity two of τ since Π(α−1,α,α+1) is
multiplicity free.

Our claim follows.

4.5.2. Non-unitarizability of π8 and π7. As before, let δ1 = δ([−α, α]).

Lemma 4.4. Let
Γ̂ = δ1 o π8.

Then, Γ̂ contains the following irreducible subquotients

Γ±1 := L([α, α+ 1], [α− 1]; δ([−α, α]±;σ)),

Γ±2 := L([α], [α− 1]; δ([−α, α+ 1]±;σ)),

Γ3 := L([α], [α− 1], [−α, α+ 1];σ), Γ4 := L([−α, α+ 1]; δs.p.([α− 1], [α];σ)).

In particular, the length of Γ̂ is at least six.

Proof. By Proposition 2.1

Γ±1 ≤ Γ̂.

We have

[α− 1]× δ([α, α+ 1]) o σ = Π3 + Π4 = π6 + π8 + Π4,

by (4.7), which implies

(4.8) δ([−α, α+ 1])× [α− 1]× [α] o σ ≤ δ1 × [α− 1]× δ([α, α+ 1]) o σ =

Γ̂ + δ1 o π6 + δ1 o Π4.

The left-hand side contains, among others, Γ±2 , Γ3 and Γ4 as subquotients. On the
other hand, by (2.16), none of Γ±2 , Γ3 and Γ4 can be a subquotient of δ1 ×Π4. We
claim that none of them can be a subquotient of δ1 o π6 as well.

Observe that

Γ±2 ↪→ L([−α], [−α+1])oδ([−α, α+1]±;σ) ↪→ L([−α], [−α+1])×δ([−α, α+1])oσ
and hence by Frobenius reciprocity

L([−α], [−α+ 1])× δ([−α, α+ 1])⊗ σ ≤ sGL(Γ±2 ).

Similarly,
L([−α], [−α+ 1])× δ([−α− 1, α])⊗ σ ≤ sGL(Γ3).

and
L([−α− 1, α], [α− 1], [α])⊗ σ ≤ sGL(Γ4).

On the other hand,

sGL(δ1 o π6) ≤
( α∑
x=−α−1

δ([−x, α])× δ([x+ 1, α]
)
×

( α+1∑
i=α−2

δ([−i,−α+ 1])× δ([i+ 1, α+ 1]
)
⊗ σ.

Clearly, no irreducible subquotient of the right-hand side is of the form L([α− 1] +
b)⊗ σ or L([−α] + b)⊗ σ for any multisegment b. Therefore,

Γ±2 ,Γ3,Γ4 6≤ δ1 o π6.
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By (4.8) we infer that

Γ±2 ,Γ3,Γ4 ≤ Γ̂.

The lemma follows. �

The non-unitarizability of π8 and π7 would follow from Lemma 2.12 once we
prove the following lemma.

Lemma 4.5. The multiplicity of τ̂ := δ1 ⊗ π8 in µ∗(Γ̂) is at most 4.

Proof. We first show that the multiplicity of τ̂ in µ∗(δ1 o Π3) = M∗(δ1) o
µ∗(Π3) is six.

By Remak 2.16 we need to consider the multiplicity of τ̂ in

(4.9)
(

2

α∑
i=−α

δ([−i, α])⊗ δ([i+ 1, α]) + 1⊗ δ1
)
o µ∗(Π3)

By (3.2c) we have

µ∗(Π3) = (1⊗ [α− 1] + [α− 1]⊗ 1 + [−α+ 1]⊗ 1)

o
(

1⊗ L([α, α+ 1];σ) + [−α]⊗ [α+ 1] o σ +((((
((((

(
[α+ 1]⊗ L([α];σ)

+((((
((((

(
δ([−α− 1,−α])⊗ σ +(((

((((
((

[−α]× [α+ 1]⊗ σ
)
,

where we struck down terms which cannot possibly contribute τ̂ in µ∗(δ1 o Π3).
By a simple analysis, the only pertinent contribution from µ∗(Π3) is

1⊗Π3 + [−α]⊗ [α− 1]× [α+ 1] o σ + [−α]× [−α+ 1]⊗ [α+ 1] o σ

and for each of these summands, the relevant term in (4.9) is i = α, i = α− 1 and
i = α− 2 respectively. Thus, we only need to consider the terms

2δ1 ⊗Π3

+2[−α]× δ([−α+ 1, α])⊗Π(α−1,α,α+1)

+2[−α]× [−α+ 1]× δ([−α+ 2, α])⊗ [α+ 1]× δ([α− 1, α]) o σ

and the multiplicity of τ̂ in each of these summands is two.
On the other hand,

µ∗(δ1 o π6) = M∗(δ1) o µ∗(π6)

≥ 2
(
δ([−α+ 2, α])⊗ δ([α− 1, α])

)
o
(
δ([−α,−α+ 1])⊗ [α+ 1] o σ

)
≥ 2δ1 ⊗ δ([α− 1, α])× [α+ 1] o σ ≥ 2δ1 ⊗ L([α, α+ 1], [α− 1]) o σ ≥ 2τ̂ .

Therefore, by (4.7), the multiplicity of τ̂ in µ∗(Γ̂) = µ∗(δ1 oΠ3)−µ∗(δ1 o π6) is at
most 4. �

4.6. x = (α− 1, α, α) and α > 1

Proposition 4.6. Assume α > 1. Then,

(1) In the Grothendieck group we have

Π(α−1,α,α) = 2π0 + π1 + π2 + π3 + π4
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where

π0 = L([α], [α− 1]; δ([α];σ))

π1 = L([α]; δs.p.([α− 1], [α];σ)), π2 = L([α], [α− 1, α];σ),

π3 = L([α− 1, α]; δ([α];σ)), π4 = L([α], [α− 1], [α];σ).

(2) πt1 = π2, πt3 = π4, πt0 = π0.
(3) We have

π1 = [α] o δs.p.([α− 1], [α];σ), π2 = [α] o L([α− 1, α];σ),

π3 = δ([α− 1, α]) o δ([α];σ), π4 = L([α− 1], [α]) o L([α];σ).

(4) None of the representations π1, π2, π3, π4 is unitarizable.
(5) (See Appendix A) The representation π0 is unitarizable.

Proof. Recall

(4.10) Jordρ(δs.p.([α− 1], [α];σ)) = {η + 1, η + 3, . . . , 2α− 5, 2α− 1, 2α+ 1},

and that the partially defined function ε attached to the above square-integrable
representation is different on 2α− 1 and 2α+ 1. Now

[α] o δs.p.([α− 1], [α];σ)

is irreducible by (6) of Proposition 2.4. Applying the DL involution we infer that

[α] o L([α− 1, α];σ)

is irreducible (since δs.p.([α − 1], [α];σ)t = L([α − 1, α];σ)). This implies (using
Proposition 2.1) that

π1 = [α] o δs.p.([α− 1], [α];σ) and π2 = [α] o L([α− 1, α];σ).

It also implies that πt1 = π2.
Examining sGL(Π(α−1,α,α)), we get that the multiplicity of π2 in Π(α−1,α,α) is

one. Therefore, also its DL dual π1 has multiplicity one in Π(α−1,α,α).
Using (2.16) and the description of JH(Π(α−1,α,α)) we see that δ([α − 1, α]) o

δ([α];σ) is irreducible. Therefore,

π3 = δ([α− 1, α]) o δ([α];σ)

and by applying DL involution we get

π4 = L([α− 1], [α]) o L([α];σ).

This implies that πt3 = π4 and hence, πt0 = π0.
Since L([α+1]; δs.p.([α−1], [α];σ)) is not unitarizable (Proposition 4.3), we get

that

π1 = [α] o δs.p.([α− 1], [α];σ)

is not unitarizable by the usual deformation argument.
Note that

L([α+ 1]; δs.p.([α− 1], [α];σ)) ≤ [α+ 1] o δs.p.([α− 1], [α];σ)

= ([α+ 1] o L([α− 1, α];σ))t.

Applying the DL involution and Proposition 4.3 we get

L([α− 1, α+ 1];σ) ≤ [α+ 1] o L([α− 1, α];σ).
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By deformation, it follows that π2 = [α]oL([α− 1, α];σ) is not unitarizable (since
L([α− 1, α+ 1];σ) is not).

The non-unitarizability of

π3 = δ([α− 1, α]) o δ([α];σ)

follows from the fact that for the exponents (α, α, α+1) we do not have unitarizable
irreducible subquotients (Proposition 4.2) by deforming δ([α−1, α]) to δ([α, α+1]).
Similarly for

π4 = L([α− 1], [α]) o L([α];σ).

Consider

Π(α,α−1,α) = [α]× [α− 1]× [α] o σ = Π1 + Π2 + Π3 + Π4

where

Π1 = L([α], [α− 1]) o L([α];σ), Π2 = δ([α− 1, α]) o L([α];σ),

Π3 = L([α], [α− 1]) o δ([α];σ), Π4 = δ([α− 1, α]) o δ([α];σ).

Looking at sGL(Π), we get that the multiplicity of the representation π0 in
Π(α,α−1,α) is at most two. Further, π4 has multiplicity one in Π(α−1,α,α) (since
it is the Langlands quotient of Π(α1,α,α−1)). Therefore, π3 has multiplicity one in
Π(α−1,α,α).

All the above discussion implies

(4.11) Π2 = π2 + π0, Π3 = π1 + π0.

This implies (1), and the proof is now complete. �

From parts (1) and (3) of the above proposition it directly follows that [α] o
L([α−1]; δ([α];σ)) is reducible. Actually, it is easy to obtain the composition series
of [α] o L([α− 1]; δ([α];σ)) as follows.

Observe that

π4 ≤ [α] o L([α− 1], [α];σ) = ([α] o L([α− 1]; δ([α];σ)))t

Passing to the DL dual, we get

(4.12) π3 ≤ [α] o L([α− 1]; δ([α];σ)).

From this we conclude

(4.13)
[α] o L([α− 1]; δ([α];σ)) = π0 + π3,

[α] o L([α− 1], [α];σ) = π0 + π4.

We remark that the representation π0 is isolated in the unitary dual.

4.7. x = (α− 1, α− 1, α) and α > 1

4.7.1. Case α ≥ 2. We first consider the case α ≥ 2.

Proposition 4.7. Assume α ≥ 2.

(1) In the Grothendieck group we have

Π(α−1,α−1,α) = π1 + π2 + π3 + π4

where

π1 = L([α], [α− 1], [α− 1];σ), π2 = L([α− 1], [α− 1, α];σ),

π3 = L([α− 1], [α− 1]; δ([α];σ)), π4 = L([α− 1]; δs.p.([α− 1], [α];σ).
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(2) We have

π1 = [α− 1] o L([α], [α− 1];σ), π2 = [α− 1] o L([α− 1, α];σ),

π3 = [α− 1] o L([α− 1]; δ([α];σ)), π4 = [α− 1] o δs.p.([α− 1], [α];σ).

(3) πt2 = π4 and πt3 = π1.
(4) None of π1, π2, π3, π4 is unitarizable.

Proof. We may write

Π(α−1,α−1,α) = Π1 + Π2

where

Π1 = [α− 1]× [α− 1] o L([α];σ), Π2 = [α− 1]× [α− 1] o δ([α];σ).

Also,

Π1 = [α− 1] o L([α], [α− 1];σ) + [α− 1] o L([α− 1, α];σ),

Π2 = [α− 1] o L([α− 1]; δ([α];σ)) + [α− 1] o δs.p.([α− 1], [α];σ).

Recall that by Proposition 3.7

δs.p.([α− 1], [α];σ)t = L([α− 1, α];σ), L([α], [α− 1];σ)t = L([α− 1]; δ([α];σ)),

and
Jordρ(δ([α];σ))) = {η + 1, η + 3, . . . , 2α− 3, 2α+ 1},

Jordρ(δs.p.([α− 1], [α];σ))) = {η + 1, η + 3, . . . , 2α− 5, 2α− 1, 2α+ 1},
where in the last case partially defined function ε attached to the square-integrable
representation is different on 2α− 1 and 2α+ 1.

By (4) of Proposition 2.4 and (4.10) we conclude that [α−1]oδs.p.([α−1], [α];σ)
is irreducible, and hence equals to π4. (Here we used that α ≥ 2.)

Furthermore, the DL involution implies that [α − 1] o L([α − 1, α];σ) is irre-
ducible, hence equals π2.

Consider [α− 1]oL([α− 1]; δ([α];σ)). If this were not irreducible, then (2.16)
would imply that

π4 ≤ [α− 1] o L([α− 1]; δ([α];σ)),

which would imply further that

([α− 1] + [−α+ 1])× L([α− 1], [α])⊗ σ ≤

([α− 1] + [−α+ 1])×
(

[−α+ 1]× [α] + δ([α− 1, α])
)
⊗ σ.

This is impossible (since [α−1]×L([α−1], [α])⊗σ does not occur on the right-hand
side).

Therefore, [α− 1] o L([α− 1]; δ([α];σ)) is irreducible (hence equals π3), which
implies using the DL involution that [α− 1]oL([α], [α− 1];σ) is irreducible (hence
equals π1).

Recall that each of π1, π2, π3, π4 is of the form [α − 1] o τ , where τ is an irre-
ducible subquotient of Π(α−1.α). We will deform [α− 1] to [α] and use Proposition
4.6.

The non-unitarizability of π4 and π2 follows from the non-unitarizability of

L([α]; δs.p.([α− 1], [α];σ)) = [α] o δs.p.([α− 1], [α];σ),

and
L([α], [α− 1, α];σ) = [α] o L([α− 1, α];σ)



48 4. UNITARIZABILITY IN THE CRITICAL CASE (CORANK 3, α > 1)

respectively. Similarly, for π1 we use the fact that L([α], [α − 1], [α];σ) is a non-
unitarizable subquotient of [α] o L([α], [α − 1];σ) (by Proposition 2.1). For π3

we use that L([α − 1, α]; δ([α];σ)) is a non-unitarizable irreducible subquotient of
[α] o L([α− 1]; δ([α];σ)) (4.12). This completes the proof of the proposition. �

4.7.2. Case α = 3
2 . We now consider the case α = 3

2 .

Proposition 4.8. Let α = 3
2 .

(1) In the Grothendieck group we have

Π( 1
2 ,

1
2 ,

3
2 ) = π1 + π2 + π3 + π4 + π5 + π6 + π7 + π8,

where

π1 = L([ 1
2 ], [ 1

2 ], [ 3
2 ];σ), π2 = τ([− 1

2 ,
1
2 ]+; δ([ 3

2 ];σ)),

π3 = L([ 1
2 ,

3
2 ], [ 1

2 ];σ), π4 = τ([− 1
2 ,

1
2 ]−; δ([ 3

2 ];σ)),

π5 = L([ 3
2 ]; δ([− 1

2 ,
1
2 ]) o σ), π6 = L([ 1

2 ], [ 1
2 ]; δ([ 3

2 ];σ)),

π7 = L([− 1
2 ,

3
2 ];σ), π8 = L([ 1

2 ]; δs.p.([
1
2 ], [ 3

2 ];σ)).

(2) All π1, . . . , π8 are unitarizable. (They are subrepresentations of unitarily
induced representations.)

(3) πt1 = π2, π
t
3 = π4, π

t
5 = π6, π

t
7 = π8.

Proof. We directly check that π1, . . . , π8 is the Jordan-Hölder series of the
representation Π( 1

2 ,
1
2 ,

3
2 ). Further, in the Grothendieck group we have

(4.14) Π( 1
2 ,

1
2 ,

3
2 ) = Π1 + Π2 + Π3 + Π4,

where

Π1 := δ([− 1
2 ,

1
2 ]) o δ([ 3

2 ];σ), Π2 := δ([− 1
2 ,

1
2 ]) o L([ 3

2 ];σ)

Π3 := L([− 1
2 ], [ 1

2 ]) o δ([ 3
2 ];σ), Π4 := L([− 1

2 ], [ 1
2 ]) o L([ 3

2 ];σ),

and each of the four summands is unitarizable, which implies that (2) holds.
Frobenius reciprocity implies that each Πi is a (multiplicity one) representation

of length at most two. The above equality and the fact that we have 8 irreducible
sub-quotients in the Jordan-Hölder series imply that each of Πi is a length 2 repre-
sentation, and that Π( 1

2 ,
1
2 ,

3
2 ) is a multiplicity one representation of length 8. Thus,

(1) holds.
Further we know from 2.26 that

πt1 = π2.

Observe that Πt
1 = Π4 and Πt

2 = Π3. This implies that no πi is fixed by DL duality.
Obviously

Π1 = π2 ⊕ π4.

Further, (1) (which we have proved), (4.14) and (2.16) imply that

Π3 = π8 ⊕ π6,

and further

Π2 = π5 ⊕ π7.

Therefore,

Π4 = π1 ⊕ π3.
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Now πt1 = π2 implies
πt3 = π4.

Observe that we have [− 1
2 ]× [− 1

2 ]⊗ δ([ 3
2 ];σ) in the Jacquet module of π6. A short

discussion implies that we have also [− 1
2 ] × [− 1

2 ] × [ 3
2 ] ⊗ σ in the Jacquet module

of π6. Therefore, [ 1
2 ]× [ 1

2 ]× [− 3
2 ]⊗ σ must be in the Jacquet module of πt6. Since

this term is not in the Jacquet module of δ([− 1
2 ,

3
2 ]) o σ and π7 ≤ δ([− 1

2 ,
3
2 ]) o σ,

we conclude πt6 6= π7. This implies

πt6 = π5,

which further implies
πt7 = π8.

This completes the proof of (3). �

Remark 4.9. Clearly π8 ≤ [ 1
2 ] o δs.p.([

1
2 ], [ 3

2 ];σ). On the other hand, π3 ≤
[ 1
2 ] o L([ 1

2 ,
3
2 ];σ). Now duality implies π4 ≤ [ 1

2 ] o δs.p.([
1
2 ], [ 3

2 ];σ). Therefore, [ 1
2 ] o

δs.p.([
1
2 ], [ 3

2 ];σ) is reducible.

Further, π6 ≤ [ 1
2 ] o L([ 1

2 ]; δ([ 3
2 ];σ)). Since π1 ≤ [ 1

2 ] o L([ 1
2 ], [ 3

2 ], σ), we get

π2 ≤ [ 1
2 ] o L([ 1

2 ]; δ([ 3
2 ];σ)), which implies that [ 1

2 ] o L([ 1
2 ]; δ([ 3

2 ];σ)) is reducible.

4.8. x = (α− 2, α− 1, α) and α ≥ 2

4.8.1. Case α > 2. We first consider the case α > 2.

Proposition 4.10. Assume α > 2.

(1) In the Grothendieck group we have

Π(α−2,α−1,α) = π1 + π2 + π3 + π4 + π5 + π6 + π7 + π8,

where

π1 = δs.p.([α− 2], [α− 1], [α];σ), π2 = L([α− 2]; δs.p.([α− 1], [α];σ)),

π3 = L([α− 1], [α− 2]; δ([α];σ)), π4 = L([α− 2, α− 1]; δ([α];σ)),

π5 = L([α], [α− 1], [α− 2];σ), π6 = L([α], [α− 2, α− 1];σ),

π7 = L([α− 1, α], [α− 2];σ), π8 = L([α− 2, α];σ).

(2) All the irreducible subquotients of Π(α−2,α−1,α) are unitarizable (they are
subquotients of the ends of complementary series).

(3) πt1 = π8, π
t
2 = π7, π

t
3 = π6, π

t
4 = π5.

Proof. We get (1) and (2) from §3.1. It remains to prove (3).
The fact π1 ↪→ [α−2]× [α−1]× [α]oσ implies π1 ↪→ L([α−2], [α−1], [α])oσ

which further implies

δ([−(α− 2),−a])⊗ σ ≤ sGL(πt1).

Since δ([−(α− 2),−a])⊗ σ ≤ sGL(π8), we get

πt1 = π8.

Further
π2 ↪→ [−(α− 2)]× [α− 1]× [α] o σ

implies
π2 ↪→ [−(α− 2)]× L([α− 1], [α]) o σ ∼=

L([α− 1], [α])× [−(α− 2)] o σ ∼= L([α− 1], [α])× [α− 2] o σ.
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This implies that δ([−α,−(α− 1)])⊗ [−(α− 2)]⊗σ is in the Jacquet module of πt2,
which implies

πt2 = π7.

Consider now

π3 ↪→ L([−(α− 1)], [−(α− 2)])× [α] o σ ∼= [α]× L([−(α− 1)], [−(α− 2)]) o σ

∼= [α]× L([α− 2], [α− 1]) o σ.

This implies that [α] ⊗ L([α − 2], [(α − 1)]) ⊗ σ is in the Jacquet module of π3,
and therefore [−α] × δ([−(α − 1),−(α − 2)]) o σ is in the Jacquet module of πt3.
Therefore,

πt3 = π6.

Finally, consider

π4 ↪→ δ([−(α− 1),−(α− 2)])× [α] o σ ∼= [α]× δ([−(α− 1),−(α− 2)]) o σ

∼= [α]× δ([α− 2, α− 1]) o σ

This implies that [−α]⊗ L([−(α− 1)], [−(α− 2)])⊗ σ is in the Jacquet module of
πt4. Therefore, πt4 embeds into

[−α]× [−(α− 1)]× [−(α− 2)]) o σ,

which implies

πt4 = π5.

�

One directly gets that δ([α−2, α−1])oδ([α];σ) and δ([α−2, α−1])oL([α];σ)
reduce.

4.8.2. Case α = 2. Now we turn to the case α = 2.

Proposition 4.11. Assume α = 2.

(1) In the Grothendieck group we have

Π(0,1,2) = π1 + π2 + π3 + π4 + π5 + π6 + π7 + π8,

where

π1 = L([1, 2]; [0] o σ), π2 = τ([0]+; δs.p.([1], [2];σ)),

π3 = L([0, 2];σ), π4 = τ([0]−; δs.p.([1], [2];σ)),

π5 = L([1]; [0] o δ([2];σ)), π6 = L([2], [0, 1];σ),

π7 = L([0, 1]; δ([2];σ)), π8 = L([2], [1]; [0] o σ).

(2) All πi’s are unitarizable.
(3) πt1 = π2, π

t
3 = π4, π

t
5 = π6, π

t
7 = π8.

Proof. We conclude in a standard way that π1, . . . , π8 is the Jordan-Hölder
series of Π(0,1,2). All the irreducible subquotients of the induced representation

Π(0,1,2) = ([0]× [1]) o ([2] o σ).

are unitarizable (since they are subquotients of the ends of complementary series).
Thus, (2) holds.

From our characterisation of π2, one can easily compute:

sGL(π2) = 2L([0], [1], [2])⊗ σ + L([0, 1], [2])⊗ σ,



4.8. X = (α− 2, α− 1, α) AND α ≥ 2 51

sGL(π4) = L([0, 1], [2])⊗ σ
(see also [68], Theorem 1.2, (2), (b)).

Now we shall consider π7 (such representations are called in [33] segment rep-
resentations). From there we know that (the segment representation) π7 has the
following (semi-simplification of) Jacquet module:

(4.15) sGL(π7) = δ([0, 2])⊗ σ + [0]× δ([1, 2])⊗ σ + δ([−1, 0])× [2]⊗ σ.
This implies that the representation with irreducible generic term in sGL whose all
exponents are non-negative, is π7. Further, one directly sees that π8 is a represen-
tation with irreducible cogeneric term in sGL which has all exponents non-positive.
Now (2.26) implies

πt8 = π7.

This implies that the multiplicity of π7 in Π(0,1,2) is one (since the multiplicity of
π8 is one).

In [33] (see 2.10) is computed

sGL(π3) = δ([−2, 0])⊗ σ.
Write

Π(0,1,2) = Π1 + Π2 + Π3 + Π4,

where

Π1 := [0]× L([1, 2];σ), Π2 := [0]× L([1]; δ([2];σ)),

Π3 := [0]× L([1], [2];σ), Π4 := [0]× δs.p.([1], [2];σ).

Then,
Πt

1 = Π4, Πt
2 = Π3.

Obviously
Π4 = π2 ⊕ π4.

This implies that Π1 is a multiplicity one representation of length two. The fact
that Jordan-Hölder series of Π(0,1,2) have 8 representations, implies that also Π2

and Π3 are reducible.
Now (2.16), the above formulas for Jacquet modules of π2 and π4, and the

formula for sGL(L([1]; δ([2];σ))) imply that only possible subquotients of Π2 are π5

and π7. This implies
Π2 = π5 + π7.

Observe that
π1 ≤ Π1,

and therefore πt1 ≤ Π4. Further we have in the Jacquet module of π1 the term
2δ([−2,−1])⊗ [0]⊗ σ, and therefore 2L([1], [2])⊗ [0]⊗ σ is in the Jacquet module
of πt1. Since the minimal non-trivial Jacquet module of π4 is a multiplicity one
representation, we conclude

πt1 = π2.

Further (2.16) implies π6 6≤ Π1 and π6 6≤ Π2, which implies

Π3 = π8 + π6,

and further
Π1 = π1 + π3.

Now we conclude that
πt3 = π4.
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Observe that π8 ↪→ [−2]×[−1]×[0]oσ, which implies π8 ↪→ L([−2], [−1], [0])oσ.
Therefore, δ([0, 2])⊗ σ is in the Jacquet module of πt8.

The fact that π5 ↪→ [−1] × [0] o δ([2];σ) implies π5 ↪→ L([−1], [0]) o δ([2];σ),
which implies

sGL(π5) ≤ (L([0], [1]) + [0]× [−1] + L([−1], [0])× [2]⊗ σ.
We obviously do not have δ([0, 2])⊗σ on the right-hand side of the above inequality.
This implies πt8 6= π5. Therefore,

πt8 = π7,

which implies
πt6 = π5.

The proof of (1) and (3) is now complete. �

Obviously, π7 ≤ δ([0, 1]) o δ([2];σ). Using (4.15), one directly gets that π7 <
δ([0, 1]) o δ([2];σ). Therefore, δ([0, 1]) o δ([2];σ) is reducible.



CHAPTER 5

Remaining Cases for α = 1
2 and α = 1

5.1. x = (0, 1, 2) and α = 1

Proposition 5.1. Assume α = 1. Then,

(1) In the Grothendieck group we have

Π(0,1,2) = π1 + π2 + π3 + π4 + π5 + π6 + π7 + π8

where

π1 = L([2], [1]; [0] o σ), π2 = τ([0]+; δ([1, 2];σ)),

π3 = L([2], [0, 1];σ), π4 = τ([0]−; δ([1, 2];σ)),

π5 = L([0, 2];σ), π6 = L([2]; τ([0]−; δ([1];σ))),

π7 = L([1, 2]; [0] o σ), π8 = L([2]; τ([0]+; δ([1];σ))).

(2) πt1 = π2, πt3 = π4, πt5 = π6, πt7 = π8.
(3) π1, π2, π3, π4 are unitarizable.
(4) π5, π6, π7, π8 are not unitarizable.

Proof. Write

Π(0,1,2) = Π1 + Π2 + Π3 + Π4

where

Π1 = [0] o δ([1, 2];σ), Π2 = [0] o L([2], [1];σ)

Π3 = [0] o L([1, 2];σ), Π4 = [0] o L([2]; δ([1];σ)).

Note that Π1 and Π2 are unitarizable (and Π1 is tempered). We have

(5.1) Π1 = π2 ⊕ π4

and hence π2 and π4 are unitarizable. Moreover, Π2 = Πt
1 is a sum of two irreducible

unitarizable representations, and one of them is π1.
Consider the diagram

0 // [2]× L([0], [1]) o σ // Π(2,0,1)
∼= Π(0,2,1)

����

// [2]× δ([0, 1]) o σ

����

// 0

Π2 π3

We show that

Π2 6≤ [2]× L([0], [1]) o σ.

Otherwise, taking sGL on both side, we would get

2[0]× L([−2], [−1]) ≤
(
��[2] + [−2]

)
×
(
���

��L([0], [1]) + [0]× [−1] + L([0], [−1])
)
.

53
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Crossing out redundant terms on the right-hand side we get

2[0]× L([−2], [−1]) ≤ [−2]× [0]× [−1] + [−2]× L([0], [−1]).

However, the multiplicity of L([−2], [−1, 0]) in the left-hand side is two, while on
the right-hand side it is one (since L([−2], [−1, 0]) is not a subquotient of

[−2]× L([0], [−1]) = L([−2], [0], [−1]) + L([0], [−2,−1]),

and [−2]× [0]× [−1] is multiplicity free).
By Lemma 2.15 we infer that π3 ≤ Π2.
We conclude that

(5.2) Π2 = π1 ⊕ π3.

In particular, π1 and π3 are unitarizable.
From (2.26) we get

πt2 = π1

which further implies (using (5.1) and (5.2))

πt4 = π3.

Consider now Π3 and Π4. We know that these two induced representations
must contain between themselves π5, π6, π7, π8 as subquotients (and possibly others
a priori). Moreover, Π4 is reducible by Proposition 2.1 and Πt

3 = Π4 by Proposition
3.5. Therefore, Π3 is also reducible.

We know that π7 occurs in Π3 with multiplicity one. Observe that by (3.2c)
we get that

sGL(Π3) = 2 · [0]× δ([−2,−1])⊗ σ + 2 · [0]× [−1]× [2]⊗ σ
= 2 · δ([−2, 0])⊗ σ + 2 · L([0], [−2,−1])⊗ σ

+2 · L([0], [−1])× [2]⊗ σ + 2 · δ([−1, 0])× [2]⊗ σ.

From this it easily follows that Π3 has no tempered subquotients. It follows from
(2.16) that every subquotient of Π3 other than π7 is isomorphic to π5. In partic-
ular, JH(Π3) has two elements, and therefore the same is true for JH(Π4). Now
Proposition 2.1 implies

(5.3) Π4 = π8 + π6.

Therefore,

(5.4) Π3 = π7 + π5.

From this we see that Π(0,1,2) is a multiplicity free representation of length 8.
Since L([−2,−1], [0]) ⊗ σ ≤ sGL(π7), we have L([0, 1], [2]) ⊗ σ ≤ sGL(πt7).

Suppose on the contrary that πt7 = π6. Then, we would have by (3.7d)

L([0, 1], [2])⊗σ ≤ (([2]+[−2])⊗1)oµ∗(τ([0]−; δ([1];σ)) = ([2]+��
�[−2])×L([0], [1])⊗σ,

which is impossible. Therefore,

πt7 = π8,

which further implies

πt5 = π6.

In the rest of the section we deal with the non-unitarizability of π5, π6, π7, π8. �
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5.1.1. Non-unitarizability of π5 and π6. By [33, Theorem 4.1 (A1)] we
have

Π′ := δ([0, 2]) o σ = π5 + π2.

Write δ1 = δ([−1, 1]) and Γ = δ1 o π5. Consider

δ1 ×Π′ = δ1 o
(
π5 + π2

)
.

Clearly, L([0, 2]; τ([−1, 1]±;σ)) ≤ δ1 ×Π′. Since δ1 and π2 are tempered and

δ([−1, 2])× δ([0, 1]) o σ ≤ δ1 ×Π′

we get from (3.6) that the following six non-tempered irreducible representations

L([0, 2]; τ([−1, 1]±;σ)), L([−1, 2]; τ([0]+; δ([1];σ))),

L([0, 1]; δ([−1, 2]±;σ)), L([0, 1], [−1, 2];σ)

are subquotients of Γ.
If π5 or π6 were unitarizable, then by Lemma 2.12 the multiplicity of τ := δ1⊗π5

in µ∗(Γ) would be at least six, in contradiction to the following lemma.

Lemma 5.2. The multiplicity of τ in µ∗(Γ) is 4.

Proof. By remark 2.16 we need to consider the multiplicity of τ in(
2 · [1]⊗ δ([0, 1]) + 2 · δ([0, 1])⊗ [1] + 2 · δ1 ⊗ 1 + 1⊗ δ1

)
o(

1⊗ π5 + [2]⊗ L([0, 1];σ) + [0]⊗ L([1, 2];σ)+

[0]× [2]⊗ L([1];σ) + δ([−1, 0])⊗ [2] o σ + δ([−1, 0])× [2]⊗ σ + δ([−2, 0])⊗ σ
)
.

We underline the terms which can actually contribute to the multiplicity of τ .
Obviously, (δ1 ⊗ 1) o (1⊗ π5) = τ . Moreover, the multiplicity of τ in

[1]× δ([−1, 0])⊗ δ([0, 1]) o [2] o σ

is one since the multiplicity of δ1 in [1] × δ([−1, 0]) is one, and the multiplicity of
π5 in δ([0, 1])o [2]oσ is one since π5 ≤ δ([0, 2])oσ ≤ δ([0, 1])o [2]oσ and Π(0,1,2)

is multiplicity free.
All in all, the multiplicity of τ in µ∗(Γ) is four. �

5.1.2. Non-unitarizability of π7 and π8.

Lemma 5.3. Let δ1 = δ([−1, 1]) as before. Then, the representation

Γ̂ := δ1 o π7

admits (at least) the following irreducible subquotients

γ±1 = L([1, 2]; [0] o δ([−1, 1]±;σ)), γ±2 = L([1]; [0] o δ([−1, 2]±;σ)),

γ3 = L([1], [−1, 2]; [0] o σ).

Hence, the length of Γ̂ is at least 5.

We remark that by [39, Proposition 2.1], Jordρ(δ([−1, 2]±;σ)) = {1, 3, 5} and
therefore [0] o δ([−1, 2]±;σ) is irreducible.
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Proof. By Proposition 2.1 Γ̂ admits γ±1 as irreducible subquotients.
Recall that in the Grothendieck group we have

Π3 = π7 + π5.

Since

[0]× δ([1, 2]) o σ = Π3 + Π1,

and Π1 is tempered, it follows that any non-tempered irreducible subquotient of

δ1 × [0]× δ([1, 2]) o σ is necessarily a subquotient of Γ̂ or of δ1 o π5. On the other
hand,

δ([−1, 2])× [0]× [1] o σ ≤ δ1 × [0]× δ([1, 2]) o σ

and the left-hand side admits γ±2 and γ3 as (non-tempered) irreducible subquotients.
Hence, it is enough to show that none of γ±2 and γ3 is a subquotient of δ1 o π5.

By Frobenius reciprocity,

L([−1], [0])× δ([−1, 2])⊗ σ ≤ sGL(γ±2 ) and L([−1], [0])× δ([−2, 1])⊗ σ ≤ sGL(γ3).

On the other hand, it is easy to see that

L([−1] + b)⊗ σ 6≤M∗(δ1)×M∗(δ([0, 2])) o (1⊗ σ)

for any multisegment b. Therefore, γ±2 , γ3 6≤ δ1 o π5 as required. �

Remark 5.4. In fact, one can show that Γ̂ also contains the irreducible sub-
quotient L([−1, 2]; τ([0]−; δ([1];σ))). (We will not need to use this fact.) Indeed,
as in the proof above, it suffices to show that

L([−1, 2]; τ([0]−; δ([1];σ))) 6≤ δ1 o π5.

Suppose on the contrary that this is not the case. Then, we would have

δ([−2, 1])⊗ τ([0]−; δ([1];σ)) ≤ µ∗(δ1 o π5) = M∗(δ1) o µ∗(π5).

However, from the formulas for M∗(δ1) and µ∗(π5), the only possibility to get
δ([−2, 1]) ⊗ τ([0]−; δ([1];σ)) in µ∗(δ1 o π5) would be from the term δ([−2, 0]) ⊗ σ
of µ∗(π5) (in order to obtain exponent −2) and one of the terms [1] ⊗ δ([0, 1])
or [1] ⊗ δ([−1, 0]) from M∗(δ1). However, by (3.6) δ([0, 1]) o σ (and hence also
δ([−1, 0]) o σ) does not admit τ([0]−; δ([1];σ)) as a subquotient.

In order to deduce the non-unitarizability of π7 and π8 from Lemma 2.12 it
remains to prove the following.

Lemma 5.5. The multiplicity of τ̂ := δ1 ⊗ π7 in µ∗(Γ̂) is ≤ 4.

Proof. We will show that in fact the multiplicity of τ̂ in µ∗(δ1 o Π3) =
M∗(δ1) o µ∗(Π3) is 4. By remark 2.16 we need to consider the multiplicity of
τ̂ in(

2 · [1]⊗ δ([0, 1]) + 2 · δ([0, 1])⊗ [1] + 2 · δ1 ⊗ 1 + 1⊗ δ1
)
o µ∗(Π3) =(

2 · [1]⊗ δ([0, 1]) + 2 · δ([0, 1])⊗ [1]
:::::::::::

+ 2 · δ1 ⊗ 1 + 1⊗ δ1
)
×
(

1⊗ [0]
:::::

+ 2 · [0]⊗ 1
)
o(

1⊗ L([1, 2];σ) + [−1]⊗ [2] o σ
:::::::::::

+ [2]⊗ L([1];σ) + δ([−2,−1])⊗ σ + [−1]× [2]⊗ σ
)
.
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We highlighted the terms which may contribute to the multiplicity of τ̂ . The solid
underlined terms give 2 · δ1⊗Π3 which contains τ̂ with multiplicity two. The wavy
underlined terms give

δ([0, 1])× [−1]⊗Π(0,1,2)

which again contains τ̂ with multiplicity two. The overlined terms give

2 · [1]× [0]× [−1]⊗ δ([0, 1]) o [2]× σ
which does not contain τ̂ . Indeed, π7 does not occur in δ([0, 1])× [2] o σ since

π7 ≤ L([1, 2], [0]) o σ ≤ L([1], [0])× [2] o σ

and Π(0,1,2) is multiplicity free.
Our claim follows. �

This concludes the proof of Proposition 5.1.

5.2. x = (0, 1, 1) and α = 1

Proposition 5.6. Assume α = 1. Then,

(1) In the Grothendieck group we have

Π(0,1,1) = 2π1 + π2 + 2π3 + 2π+
4 + π−4 + π+

5 + π−5

where

π1 = L([0, 1], [1];σ), π2 = L([1], [1]; [0] o σ), π3 = L([0, 1]; δ([1];σ)),

π±4 = L([1]; τ([0]±; δ([1];σ))), π±5 = δ([−1, 1]±;σ).

(2) We have πt1 = π3, πt2 = π+
5 , (π−4 )t = π−5 , (π+

4 )t = π+
4 .

(3) All irreducible subquotients of Π(0,1,1) are unitarizable.

Proof. We have

Π(0,1,1) =

δ([−1, 1]) o σ + L([1], [0], [−1]) o σ + L([0, 1], [−1]) o σ + L([−1, 0], [1]) o σ

= δ([−1, 1]) o σ + L([1], [0], [−1]) o σ + 2L([0, 1], [−1]) o σ.

Now,
δ([−1, 1]) o σ = π+

5 + π−5
We show that

(5.5) L([−1], [0], [1]) o σ = π2 + π−4 .

Clearly L([−1], [0], [1]) o σ contains π2 with multiplicity one.
Consider

0 // L([1], [0]) o L([1];σ) // L([1], [0])× [−1] o σ

����

// L([1], [0]) o δ([1];σ) // 0

L([1], [0], [−1]) o σ

We see easily that

L([1], [0], [−1]) o σ 6≤ L([1], [0]) o L([1];σ)

since sGL(L([1], [0], [−1]) o σ) contains L([1], [0], [−1]) ⊗ σ with multiplicity two
while sGL(L([1], [0]) o L([1];σ)) contains L([1], [0], [−1])⊗ σ with multiplicity one.
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Note that the cosocle of L([1], [0]) o δ([1];σ) is a a quotient of the cosocle of [1]×
[0] o δ([1];σ) = [1]× τ([0]+; δ([1]; s))⊕ [1]× τ([0]−; δ([1]; s) which is π+

4 ⊕ π
−
4 . By

Lemma 2.15, at least one of π±4 occurs in L([1], [0], [−1]) o σ.
Suppose on the contrary that

π+
4 ≤ L([1], [0], [−1]) o σ.

Clearly, sGL(π+
4 ) contains [−1] ⊗ τ([0]+; δ([1];σ)). This and (3.7c) imply that the

Jacquet module π+
4 contains 2 · [−1]⊗ δ([0, 1])⊗ σ, and therefore also

2 · [−1]⊗ [1]⊗ [0]⊗ σ.

On the other hand

sGL(L([1], [0], [−1]) o σ) = 2(L([−1], [0], [1])⊗ σ + 2L([−1], [0])× [−1])⊗ σ.

Obviously, we cannot have [−1]⊗ [1]⊗ [0]⊗ σ in the Jacquet module of the above
representation, and therefore we get a contradiction.

We conclude that

π−4 ≤ L([1], [0], [−1]) o σ

which further implies (5.5).
Since πt5 = π2 by (2.26) it follows that (π−5 )t = π−4 .
We also conclude that

L([0, 1], [−1]) o σ ≥ π1 + π3 + π+
4 .

Therefore, each of π1, π3 and π+
4 occurs with multiplicity bigger than one (and

even) in Π(0,1,1).
In the Grothendieck group we have

Π(0,1,1) = Π+ + Π− + Πt
+ + Πt

−

where

Π± = [1] o τ([0]±; δ([1];σ)), Πt
+ = [1] o L([1]; [0] o σ), Πt

− = [1] o L([0, 1];σ).

We claim that

Π− = π−4 + π3.

Clearly π−4 occurs in Π− with multiplicity one. By (2.16), the only other possi-
ble non-tempered irreducible subquotient of Π− is π3. On the other hand, since
sGL(τ([0]−; δ([1];σ)) = L([1], [0])⊗σ, we have L([−1, 1])⊗σ 6≤ sGL(Π−). Therefore,
π±5 6≤ Π−. So the only other possible irreducible subquotient of Π− other than π−4
is π3. On the other hand, clearly π1 occurs with multiplicity one in Πt

− and we

have πt1 6= π−4 . It necessarily follows that πt1 = π3 and Π− = π−4 + π3.
It follows that (π+

4 )t = π+
4 .

We show that

Π+ = π+
4 + π3 + π+

5 .

Clearly Π+ contains π+
4 with multiplicity one. As before, the only other possible

non-tempered irreducible subquotient of Π+ is π3. The representation π+
5 occurs in

Π+ since sGL(Π+) ≥ δ([0, 1])× [1]⊗ σ and occurs with multiplicity one in Π(0,1,1)

(see §2.14).
We know that π3 occurs with multiplicity at least two in Π(0,1,1). On the other

hand, π3 occurs with multiplicity one in Π− and it does not occur in Πt
± since

π1 = πt3 does not occur in Π±. Therefore, π3 must occur in Π+.
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It remains to show that Π+ contains π3 with multiplicity one and does not
contain π−5 .

We have sGL(Π+) =(
([1] + [−1])× (2δ([0, 1]) + L([0], [1]))

)
⊗ σ =

(
2[1]× δ([0, 1]) + [1]× L([0], [1])

+2δ([−1, 1]) + 2L([−1], [0, 1]) + L([−1, 0], [1]) + L([−1], [0], [1])
)
⊗ σ.

In particular, δ([−1, 1]) ⊗ σ occurs with multiplicity two and L([−1, 0], [1]) occurs
with multiplicity one. We claim that sGL(π+

4 ) contains δ([−1, 1]) ⊗ σ. Indeed,
since π+

4 ↪→ [−1] o τ([0]+; δ([1];σ)), we have µ∗(π+
4 ) ≥ [−1] ⊗ τ([0]+; δ([1];σ))

and therefore the Jacquet module of π+
4 contains [−1] ⊗ [0] ⊗ [1] ⊗ σ. It follows

that sGL(π+
4 ) ≥ L([−1], [0], [1]) ⊗ σ. Since (π+

4 )t = π4 we infer that sGL(π+
4 ) ≥

δ([−1, 1])⊗ σ as claimed.
Since Π+ contains π+

5 and both sGL(π±5 ) contains δ([−1, 1])⊗σ, it follows now
that π−5 cannot occur in Π+.

µ∗(π3) ≥ δ([−1, 0])⊗ δ([1];σ) and therefore the Jacquet module of π3 contains
[0]⊗[−1]⊗[1]⊗σ. It follows that sGL(π3) ≥ L([−1, 0], [1])⊗σ. Since L([−1, 0], [1])⊗σ
occurs with multiplicity one in sGL(Π+) we infer that π3 cannot occur in Π+ with
multiplicity bigger than one. �

Remark 5.7. The fact that π+
5 ≤ δ([0, 1]) o δ([1];σ) implies that δ([0, 1]) o

δ([1];σ) is reducible (since also π3 ≤ δ([0, 1]) o δ([1];σ)).
Furthermore, π±4 ≤ L([0], [1])oδ([1];σ), which implies that L([0], [1])oδ([1];σ)

is reducible, as well as δ([0, 1]) o L([1];σ).

5.3. x = (0, 0, 1) and α = 1

Proposition 5.8. (1) In the Grothendieck group we have

Π(0,0,1) = [0] o L([0, 1];σ) + [0] o L([1]; [0] o σ)

+ [0] o τ([0]+; δ([1];σ)) + [0] o τ([0]−; δ([1];σ)),

where the representations above are irreducible.
(2) We have

([0] o τ([0]+; δ([1];σ)))t = [0] o L([1]; [0] o σ),

([0] o L([0, 1];σ))t = [0] o τ([0]−; δ([1];σ)).

(3) All irreducible subquotients of Π(0,0,1) are unitarizable.

Proof. Indeed,

Π(0,0,1) = [0] o
(

[0] o L([1];σ) + [0] o δ([1];σ)
)

= [0] o L([0, 1];σ) + [0] o L([1]; [0] o σ)+

[0] o τ([0]+; δ([1];σ)) + [0] o τ([0]−; δ([1];σ)).

The representations [0]oτ([0]±; δ([1];σ)) are irreducible by the theory of R-groups.
The representations [0] o L([0, 1];σ) and [0] o L([1]; [0] o σ) are irreducible by
duality. �
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5.4. x = ( 1
2 ,

1
2 ,

3
2 ) and α = 1

2

Proposition 5.9. Assume α = 1
2 .

(1) In the Grothendieck group we have

(5.6) Π( 1
2 ,

1
2 ,

3
2 ) = π1 + π2 + 2π3 + 2π4 + π5 + π6 + π7 + π8 + π9 + π10

where

π1 = L([ 3
2 ], [ 1

2 ], [ 1
2 ];σ), π2 = δ([− 1

2 ,
3
2 ]+;σ),

π3 = L([− 1
2 ,

3
2 ];σ), π4 = L([ 1

2 ,
3
2 ]; δ([ 1

2 ];σ)),

π5 = L([ 3
2 ], [ 1

2 ]; δ([ 1
2 ];σ)), π6 = δ([− 1

2 ,
3
2 ]−;σ),

π7 = L([ 1
2 ]; δ([ 1

2 ,
3
2 ];σ)), π8 = L([ 3

2 ]; δ([− 1
2 ,

1
2 ]−;σ)),

π9 = L([ 1
2 ,

3
2 ], [ 1

2 ];σ), π10 = L([ 3
2 ]; δ([− 1

2 ,
1
2 ]+;σ)).

(2) πt1 = π2, πt3 = π4, πt5 = π6, πt7 = π8, πt9 = π10.
(3) The representations π1, . . . , π8 are unitarizable.
(4) The representations π9, π10 are not unitarizable.

Remark 5.10. In fact, each of π1, . . . , π8 is a subquotient of a representation at
the end of a complementary series. (In addition, π2 and π6 are square-integrable.)

We proceed in several steps.

5.4.1. First observe that the representations π2 and π6 are unitarizable, since
they are square-integrable. Furthermore π3 and π1 are unitarizable, since they
are at the ends of the complementary series (starting with δ([−1, 1]) o σ and
L([−1], [0], [1])oσ respectively). Analogously, π4 (and also π1) is unitarizable since
it is at the ends of the complementary series starting with δ([− 1

2 ,
1
2 ]) o δ([ 1

2 ];σ)

(and with L([ 1
2 ], [− 1

2 ]) o L([ 1
2 ];σ)). Furthermore π7 is unitarizable (since it is at

the end of the complementary series which start with [0] o δ([ 1
2 ,

3
2 ];σ)).

5.4.2. Observe that (2.26) implies

πt2 = π1.

We know that π2 has multiplicity one in Π( 1
2 ,

1
2 ,

3
2 ). By (2.16) we get that

[ 1
2 ] o δ([ 1

2 ,
3
2 ];σ) = π7 + π2.

Indeed, π6 cannot occurs on the left-hand side because δ([− 1
2 ,

3
2 ])⊗ σ occurs with

multiplicity one in sGL([ 1
2 ] o δ([ 1

2 ,
3
2 ];σ)), sGL(π2) and sGL(π6).

This implies
[ 1
2 ] o L([ 1

2 ], [ 3
2 ];σ) = πt7 + π1.

5.4.3. We show that πt7 = π8.
Consider

0 // [ 3
2 ] o L([ 1

2 ], [ 1
2 ];σ) // [ 3

2 ]× [− 1
2 ] o L([ 1

2 ];σ)

����

// [ 3
2 ]× δ([− 1

2 ,
1
2 ]−;σ)

����

// 0

[− 1
2 ] o L([ 3

2 ], [ 1
2 ];σ) π8

We show that
[− 1

2 ] o L([ 3
2 ], [ 1

2 ];σ) 6≤ [ 3
2 ] o L([ 1

2 ], [ 1
2 ];σ).
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Otherwise, by passing to sGL we would get

([ 1
2 ] + [− 1

2 ])× L([− 1
2 ], [− 3

2 ]) ≤ ([ 3
2 ] + [− 3

2 ])× (L([− 1
2 ], [ 1

2 ]) + [− 1
2 ]× [− 1

2 ]).

Considering the part supported on [− 3
2 ], [− 1

2 ], [ 1
2 ] we get

[ 1
2 ]× L([− 1

2 ], [− 3
2 ]) ≤ [− 3

2 ]× L([− 1
2 ], [ 1

2 ]),

which is impossible since L([− 3
2 ], [− 1

2 ,
1
2 ]) occurs in the left-hand side but not in

the right-hand side.
By Lemma 2.15 we infer that

(5.7) π8 ≤ [− 1
2 ] o L([ 3

2 ], [ 1
2 ];σ)).

This implies that π8 is unitarizable. Moreover, we get

[ 1
2 ] o L([ 1

2 ], [ 3
2 ];σ) = π8 + π1.

and
πt7 = π8.

5.4.4. We show that

(5.8) π5 ≤ L([ 3
2 ], [ 1

2 ], [− 1
2 ]) o σ

and hence that π5 is unitarizable, since it a subquotient at the end of a comple-
mentary series.

Consider

0 // L([ 3
2 ], [ 1

2 ]) o L([ 1
2 ];σ) // L([ 3

2 ], [ 1
2 ])× [− 1

2 ] o σ

����

// L([ 3
2 ], [ 1

2 ]) o δ([ 1
2 ];σ)

����

// 0

L([ 3
2 ], [ 1

2 ], [− 1
2 ]) o σ π5

We have
L([ 3

2 ], [ 1
2 ], [− 1

2 ]) o σ 6≤ L([ 3
2 ], [ 1

2 ]) o L([ 1
2 ];σ),

otherwise, taking sGL we would get

2 · L([− 3
2 ], [− 1

2 ], [ 1
2 ])⊗ σ ≤ (L([ 3

2 ], [ 1
2 ]) + [− 3

2 ]× [ 1
2 ] + L([− 3

2 ], [− 1
2 ]))× [− 1

2 ]⊗ σ
which is impossible.

We deduce (5.8) from Lemma 2.15.
To conclude, π1, . . . , π8 are unitarizable.

5.4.5. We show that πt5 = π6.
Let

Π′ = δ([ 1
2 ,

3
2 ]) o L([ 1

2 ];σ).

Recall
δ([− 1

2 ,
3
2 ]) o σ = π2 + π6 + π3.

From this and the fact that πt1 = π2 it follows that

πt5 ∈ {π3;π6}.
Observe that π5 is a quotient of L([ 3

2 ], [ 1
2 ])oδ([ 1

2 ];σ). Therefore, πt5 is a subquotient
of Π′. Note that

sGL(Π′) 6≥ δ([− 3
2 ,

1
2 ])⊗ σ

but
sGL(π3) ≥ δ([− 3

2 ,
1
2 ])⊗ σ.
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Therefore, necessarily πt5 = π6 as required.

5.4.6. Consider

δ([ 1
2 ,

3
2 ])× [ 1

2 ] o σ = Π′ + δ([ 1
2 ,

3
2 ]) o δ([ 1

2 ];σ).

Observe that the left-hand side contains π2 and π6 as subquotients. Furthermore,
since π2 ≤ δ([ 1

2 ,
3
2 ])o δ([ 1

2 ];σ) and the multiplicity of δ([− 1
2 ,

3
2 ]])⊗σ in the Jacquet

module of δ([ 1
2 ,

3
2 ]) o δ([ 1

2 ];σ) is one, we get

π6 ≤ Π′.

5.4.6.1. We show that

(5.9) Π′ = π6 + π9

and compute µ∗(π9).
Write

µ∗(Π′) =
(

1⊗ δ([ 1
2 ,

3
2 ]) + [− 1

2 ]⊗ [ 3
2 ] + [ 3

2 ]⊗ [ 1
2 ]

+δ([ 1
2 ,

3
2 ])⊗ 1 + [− 1

2 ]× [ 3
2 ]⊗ 1 + δ([− 3

2 ,−
1
2 ])⊗ 1

)
o
(

1⊗ L([ 1
2 ];σ) + [− 1

2 ]⊗ σ
)

as

1⊗Π′

+[− 1
2 ]⊗ [ 3

2 ] o L([ 1
2 ];σ) +

ω2︷ ︸︸ ︷
[ 3
2 ]⊗ L([ 1

2 ], [ 1
2 ];σ) +[3

2 ]⊗ δ([− 1
2 ,

1
2 ]−;σ)

+[− 1
2 ]⊗ δ([ 1

2 ,
3
2 ]) o σ

+δ([ 1
2 ,

3
2 ])⊗ L([ 1

2 ];σ) + 2 ·

ω′′2︷ ︸︸ ︷
[− 1

2 ]× [ 3
2 ]⊗ L([ 1

2 ];σ) +δ([− 3
2 ,−

1
2 ])⊗ L([ 1

2 ];σ)

+

ω′2︷ ︸︸ ︷
[− 1

2 ]× [− 1
2 ]⊗ [ 3

2 ] o σ+[− 1
2 ]× [ 3

2 ]⊗ δ([ 1
2 ];σ)

+
(
δ([− 1

2 ,
3
2 ]) +

ω1︷ ︸︸ ︷
[− 1

2 ]× [− 1
2 ]× [ 3

2 ] +

ω3︷ ︸︸ ︷
L([− 1

2 ], [ 1
2 ,

3
2 ]) +

ω′3︷ ︸︸ ︷
[− 1

2 ]× δ([− 3
2 ,−

1
2 ])
)
⊗ σ.

We consider in Π′ the irreducible subquotient π such that sGL(π) ≥ ω1 ⊗ σ. Using
the transitivity of Jacquet modules one gets that µ∗(π) ≥ ω2 +ω′2 +ω′′2 . Moreover,
µ∗(π) ≥ ω2 implies that µ∗(π) ≥ ω3 and µ∗(π) ≥ ω′2 implies µ∗(π) ≥ ω′3 ⊗ σ. Now
considering sGL(Π′) we infer that Π′ is a multiplicity one representation of length
two. Therefore,

(5.10) Π′ = π9 + π6.

Furthermore, a simple analysis using the transitivity of Jacquet modules1 gives

(5.11)

µ∗(π9) = 1⊗ π9+

+[− 1
2 ]⊗ [ 3

2 ] o L([ 1
2 ];σ) + [ 3

2 ]⊗ L([ 1
2 ], [ 1

2 ];σ) + [− 1
2 ]⊗ δ([ 1

2 ,
3
2 ]) o σ

+[− 1
2 ]× [ 3

2 ]⊗ L([ 1
2 ];σ) + δ([− 3

2 ,−
1
2 ])⊗ L([ 1

2 ];σ)

+[− 1
2 ]× [− 1

2 ]⊗ [ 3
2 ] o σ + [− 1

2 ]× [ 3
2 ]⊗ L([ 1

2 ];σ) + [− 1
2 ]× [ 3

2 ]⊗ δ([ 1
2 ];σ)

+L([− 1
2 ], [ 1

2 ,
3
2 ])⊗ σ + [− 1

2 ]× [− 1
2 ]× [ 3

2 ]⊗ σ + [− 1
2 ]× δ([− 3

2 ,−
1
2 ])⊗ σ.

1Recall that we know also µ∗(π6).
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5.4.7. It follows from the formula for µ∗(π9) that πt9 is not tempered (look
at the term [− 1

2 ] × [− 1
2 ] × [ 3

2 ] ⊗ σ which gives in the Jacquet module of the dual

representation [ 1
2 ] × [ 1

2 ] × [− 3
2 ] ⊗ σ). Once again, from the formula for µ∗(π9), we

get that the Langlands parameter of πt9 must come from a Jacquet module of

[− 3
2 ]⊗ L([ 1

2 ], [ 1
2 ];σ)t = [− 3

2 ]⊗ δ([− 1
2 ,

1
2 ]+;σ).

Since δ([− 1
2 ,

1
2 ]+;σ) is tempered, this implies

πt9 = π10.

Now observe that

πt3 6= π3.

Namely, in the Jacquet module of πt3 is δ([− 1
2 ,

3
2 ])t ⊗ σ. One directly sees that this

term is not in the Jacquet module of δ([− 1
2 ,

3
2 ]) o σ. This and the formulas for the

remaining involutions imply

πt3 = π4.

We show that in the Grothendieck group we have

Θ := L([ 3
2 ], [− 1

2 ,
1
2 ]) o σ = π8 + π10 + π3.

By Proposition 2.1, π8 and π10 occur with multiplicity one in Θ. By (2.16)
π1, π4, π5, π9 6≤ Θ and also π5, π8 6≤ Θt = L([− 3

2 ], [ 1
2 ,

3
2 ]) o σ so that π6, π7 6≤ Θ.

We have

[ 3
2 ]× δ([− 1

2 ,
1
2 ]) o σ = Θ + δ([− 1

2 ,
3
2 ]) o σ.

Therefore. π2 6≤ Θ since π2 occurs in δ([− 1
2 ,

3
2 ]) o σ and it has multiplicity one in

Π( 1
2 ,

1
2 ,

3
2 ). It remains to show that π3 occurs in Θ with multiplicity one. The repre-

sentation ω := δ([− 3
2 ,

1
2 ])⊗σ occurs with multiplicity two in sGL([ 3

2 ]×δ([− 1
2 ,

1
2 ])oσ)

and with multiplicity one in sGL(δ([− 1
2 ,

3
2 ]) o σ). Therefore, ω occurs with multi-

plicity one in sGL(Θ). We show that ω does not occur in sGL(π8) and sGL(π10). In
fact, ω does not occur in the Jacquet modules of [ 1

2 ]oL([ 1
2 ], [ 3

2 ];σ) and L([ 1
2 ], [ 3

2 ])o
δ([ 1

2 ];σ) (which contain π8 and π10 respectively as subquotients by (5.7) and the
dual of the relation (5.9)). We conclude that π3 must occur in Θ with multiplicity
one.

Passing to the dual we get

Θt = π4 + π7 + π9.

Since in the Grothendieck group we have

Π( 1
2 ,

1
2 ,

3
2 ) = Π(− 1

2 ,
1
2 ,

3
2 ) = δ([− 1

2 ,
3
2 ]) o σ + δ([− 1

2 ,
3
2 ])t o σ + Θ + Θt

and

δ([− 1
2 ,

3
2 ]) o σ = π2 + π6 + π3,

we conclude (5.6).

5.4.8. Observe that π2 ≤ δ([ 1
2 ,

3
2 ]) o δ([ 1

2 ];σ). This implies that δ([ 1
2 ,

3
2 ]) o

δ([ 1
2 ];σ) is reducible (we shall use this later). Actually, we directly get that this is

a length three representation.
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5.4.9. Non-unitarizability of π9 and π10. To finish the proof of Proposition
5.9, it remains to prove the non-unitarizability of π9 and π10.

Let δ1 = δ([− 1
2 ,

1
2 ]).

Lemma 5.11. Let α = 1
2 . The length of the representation

Γ = δ1 o π9.

is at least 6.

Proof. First, using Proposition 2.1 Γ contains

L([ 1
2 ,

3
2 ], [ 1

2 ]; δ([− 1
2 ,

1
2 ]±σ))

as irreducible subquotients. Recall

Π′ = δ([ 1
2 ,

3
2 ]) o L([ 1

2 ];σ).

Using (5.10) we get

δ1 o Π′ = Γ + δ1 o π6.

Recall that π6 is square-integrable. Therefore, any non-tempered irreducible sub-
quotient of δ1 o Π′ must be a subquotient of Γ. Observe that

δ([− 1
2 ,

3
2 ])× [ 1

2 ] o L([ 1
2 ];σ) ≤ δ1 o Π′

and the left-hand side admits the following non-tempered irreducible subquotients:

L([− 1
2 ,

3
2 ], [ 1

2 ], [ 1
2 ];σ), L([− 1

2 ,
3
2 ]; δ([− 1

2 ,
1
2 ]−;σ)).

Therefore, the length of Γ is at least four.
Consider now

(5.12) δ1 × δ([ 1
2 ,

3
2 ])× [ 1

2 ] o σ = δ1 o Π′ + δ1 o δ([ 1
2 ,

3
2 ]) o δ([ 1

2 ];σ).

We have

δ([− 1
2 ,

3
2 ])× [ 1

2 ]× [ 1
2 ] o σ ≤ δ1 × δ([ 1

2 ,
3
2 ])× [ 1

2 ] o σ.

The left-hand side contains

L([ 1
2 ], [ 1

2 ]; δ([− 1
2 ,

3
2 ]±;σ))

as irreducible subquotients. We show that these two representations are subquo-
tients of δ1 o Π′, and therefore of Γ.

Suppose on the contrary that

(5.13) L([ 1
2 ], [ 1

2 ]; δ([− 1
2 ,

3
2 ]±;σ)) ≤ δ1 o δ([ 1

2 ,
3
2 ]) o δ([ 1

2 ];σ).

Observe that

L([ 1
2 ], [ 1

2 ]; δ([− 1
2 ,

3
2 ]±;σ)) ↪→ [− 1

2 ]× [− 1
2 ] o δ([− 1

2 ,
3
2 ]±;σ).

Therefore, we have [− 1
2 ]× [− 1

2 ]⊗− for a subquotient of the Jacquet module of the
left-hand side of (5.13). However, one easily sees that there is no term of the form
[− 1

2 ]× [− 1
2 ]⊗− in the Jacquet module of the right-hand side of (5.13).

We conclude that the length of Γ is at least 6, as required. �

Lemma 5.12. The multiplicity of τ := δ1 ⊗ π9 in µ∗(Γ) is 6.
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Proof. Using Remark 2.16 and the formula (5.11) for µ∗(π9), we need to find
the multiplicity of τ in

2 · δ1 ⊗ π9 + 2 · [ 1
2 ]× [− 1

2 ]⊗ [ 1
2 ]× [ 3

2 ]oL([ 1
2 ];σ) + 2 · [ 1

2 ]× [− 1
2 ]⊗ [ 1

2 ]× δ([ 1
2 ,

3
2 ])o σ.

Since π9 occurs with multiplicity one in the standard module [ 1
2 ]× δ([ 1

2 ,
3
2 ])o σ, in

order to show multiplicity 6, it is enough to prove that

π9 6≤ L([ 1
2 ], [ 3

2 ]) o L([ 1
2 ];σ).

In turn, by passing to sGL, this follows from the fact that

δ([− 3
2 ,−

1
2 ])× [− 1

2 ] 6≤
(
L([ 1

2 ], [ 3
2 ]) + [ 1

2 ]× [− 3
2 ] + L([− 3

2 ], [− 1
2 ])
)
× [− 1

2 ],

which is easy to verify. �

5.4.10. Finally, we prove that the representations π9 and π10 are not unita-
rizable.

Suppose on the contrary that π9 or π10 is unitarizable. Then, by Lemmas 2.12,
5.11 and 5.12, the Jacquet module of Γ admits a direct summand isomorphic to
6 · τ . This would imply that for any subquotient Λ of J(Γ), the multiplicity of τ
in Λ is equal to dim Hom(Λ, τ). On the other hand, we claim that there exists a
subquotient Λ of J(Γ) of the form [ 1

2 ] × [− 1
2 ] ⊗ π9 (which clearly admits τ as a

subrepresentation, but not as a quotient).
Indeed, it follows from the geometric lemma and the fact that the Jacquet

module of δ1 is [ 1
2 ]⊗ [− 1

2 ], that for any irreducible subquotient δ2⊗ τ2 of J(π9), the
representation

[ 1
2 ]× δ2 ⊗ [− 1

2 ] o τ2

is a subquotient of J(Γ). In particular we can take δ2 = [− 1
2 ] and τ2 = δ([ 1

2 ,
3
2 ])oσ

to infer that J(Γ) admits

[ 1
2 ]× [− 1

2 ]⊗ [− 1
2 ]× δ([ 1

2 ,
3
2 ]) o σ

as a subquotient, and hence also

[ 1
2 ]× [− 1

2 ]⊗ π9

since π9 is a subquotient of δ2 o τ2.
This completes the proof of Proposition 5.9.

5.5. x = ( 1
2 ,

1
2 ,

1
2 ) and α = 1

2

Proposition 5.13. For α = 1
2 we have

(1) In the Grothendieck group we have

Π( 1
2 ,

1
2 ,

1
2 ) = π1 + π2 + π3 + π4 + 2π5

where

π1 = δ([− 1
2 ,

1
2 ]) o δ([ 1

2 ];σ), π2 = [ 1
2 ] o δ([− 1

2 ,
1
2 ]−;σ),

π3 = [ 1
2 ] o L([ 1

2 ]; δ([ 1
2 ];σ)), π4 = L([− 1

2 ], [ 1
2 ]) o L([ 1

2 ];σ)

π5 = L([ 1
2 ]; δ([− 1

2 ,
1
2 ]+;σ))

are irreducible.
(2) π1, π2, π3, π4, π5 are unitarizable.
(3) πt1 = π4, πt2 = π3, πt5 = π5.
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Proof. First note that exactly as in the case of §4.7.2 all the irreducible
subquotients of Π( 1

2 ,
1
2 ,

1
2 ) are unitarizable. Also note that π1 is irreducible since

2 ∈ Jordρ(δ([
1
2 ];σ)). Therefore, the same is true for π4 = πt1. Moreover, by the

usual analysis,

JH(Π( 1
2 ,

1
2 ,

1
2 )) = {π1, L([ 1

2 ]; δ([− 1
2 ,

1
2 ]−;σ)), L([ 1

2 ], [ 1
2 ]; δ([ 1

2 ];σ)), π4.π5}.
In the Grothendieck group we have

(5.14)
Π( 1

2 ,
1
2 ,

1
2 ) = [ 1

2 ] o δ([− 1
2 ,

1
2 ]+;σ) + [ 1

2 ] o δ([− 1
2 ,

1
2 ]−;σ)

+[ 1
2 ] o L([ 1

2 ]; δ([ 1
2 ];σ)) + [ 1

2 ] o L([ 1
2 ], [ 1

2 ];σ).

By Proposition 2.1
δ([− 1

2 ,
1
2 ]) o L([ 1

2 ];σ)

is reducible. Therefore, the same is true for its dual.
Furthermore π1 6≤ [ 1

2 ] o δ([− 1
2 ,

1
2 ]−;σ) since

[ 1
2 ]× [ 1

2 ]× [ 1
2 ]⊗ σ ≤ sGL(π1)

but
[ 1
2 ]× [ 1

2 ]× [ 1
2 ]⊗ σ 6≤ sGL([ 1

2 ] o δ([− 1
2 ,

1
2 ]−;σ)).

Therefore, (2.16) implies that π2 is irreducible. By Proposition 3.9 π3 = πt2 and
hence, π3 is also irreducible. It follows that

πt5 = π5.

Let Π′ = [ 1
2 ] o δ([− 1

2 ,
1
2 ]+;σ). We claim that

(5.15) Π′ = π5 + π1.

Indeed, [ 1
2 ]×[ 1

2 ]×[ 1
2 ]⊗σ ≤ sGL(Π′) and this implies that π1 occurs in Π′, necessarily

with multiplicity one, since it is the only irreducible subquotient π′ of Π( 1
2 ,

1
2 ,

1
2 ) such

that [ 1
2 ] × [ 1

2 ] × [ 1
2 ] ⊗ σ ≤ sGL(π′) and [ 1

2 ] × [ 1
2 ] × [ 1

2 ] ⊗ σ occurs in sGL(Π( 1
2 ,

1
2 ,

1
2 ))

with multiplicity one. Also, π5 is a the Langlands quotient of Π′, and hence occurs
with multiplicity one. We conclude (5.15) by (2.16).

Therefore, by Proposition 3.9 and duality we get

[ 1
2 ] o L([ 1

2 ], [ 1
2 ];σ) = π4 + π5.

The proof of the proposition is finished by (5.14). �

The above proposition directly implies that δ([− 1
2 ,

1
2 ]) o L([ 1

2 ];σ) is reducible.



CHAPTER 6

The Case α = 0

6.1. x = (0, 1, 2) and α = 0

Proposition 6.1. Assume α = 0. Then,

(1) We have in the Grothendieck group

(6.1) Π(0,1,2) = π+
1 + π−1 + π+

2 + π−2 + π+
3 + π−3 + π+

4 + π−4 + 2π5 + 2π6

where

π±1 = δ([0, 2]±;σ), π±2 = L([2], [1]; δ([0]±;σ))

π±3 = L([2]; δ([0, 1]±;σ)), π±4 = L([1, 2]; δ([0]±;σ)),

π5 = L([2], [0, 1];σ), π6 = L([0, 2];σ).

(2) (π±1 )t = π∓2 , (π±3 )t = π∓4 , πt5 = π6.
(3) The representations π±1 , π

±
2 are unitarizable.

(4) The representations π±3 , π
±
4 , π5, π6 are not unitarizable.

We shall prove the above proposition in several steps.

6.1.1. Using Proposition 3.10, we write Π(0,1,2) (in the Grothendieck group)
as
(6.2)

[2]o
(
L([1]; δ([0]+;σ))+L([1]; δ([0]−;σ))+2L([0, 1];σ)+δ([0, 1]+;σ)+δ([0, 1]−;σ)

)
.

By (5) of Proposition 2.4 and (4) of Proposition 3.10, the representations [2] o
δ([0, 1]±;σ) are reducible. The same is true for [2] o L([1]; δ([0]±;σ)) by duality.

Note that the Jacquet module of Π(0,1,2) contains each of [2]⊗ [1]⊗ δ([0]±;σ)
with multiplicity one. It follows that

(6.3)

π±1 is the unique irreducible subquotient of Π(0,1,2) whose Jacquet module

contains [2]⊗ [1]⊗ δ([0]±;σ) as a subquotient,

and π±1 occurs with multiplicity one in Π(0,1,2).

Dually, the Jacquet module of (π∓1 )t contains [−2]⊗[−1]⊗δ([0]∓;σ) as a subquotient
and this property characterizes it uniquely. Since [−2]⊗ [−1]⊗ δ([0]∓;σ) it also a
subquotient of the Jacquet module of π∓2 , we get

(π±1 )t = π∓2 .

Note that π±1 are square-integrable, while π±2 are unitarizable by [18].1

1This reference does not cover the case of unitary groups. These groups are covered by results
of C. Mœglin (see [70, §13] for more details). She has shown that DL dual of a general irreducible

square-integrable representation of a classical group over field of characteristic zero is unitarizable.

67
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6.1.2. We will use the following special case of (2.21)

(6.4) µ∗(δ([0, d]±;σ)) =

d∑
j=−1

δ([j + 1, d])⊗ δ([0, j]±;σ),

where by convention δ(∅±;σ) = σ.
We have an epimorphism [2] o δ([0, 1]±;σ) � π±3 . On the other hand by (6.4)

and (6.3) π±1 occurs with multiplicity one in [2] o δ([0, 1]±;σ). In fact,

π±1 ↪→ [2] o δ([0, 1]±;σ).

(This follows from (6.4) and Frobenius reciprocity.)
By the description of JH(Π(0,1,2)), (2.16) and the above discussion we infer that

(6.5) [2] o δ([0, 1]±;σ) = π±3 + π±1 .

(We cannot have π∓1 , since it has multiplicity one in Π(0,1,2) and it occurs in [2] o
δ([0, 1]∓;σ).)

Applying duality we get

(6.6) [2] o L([1]; δ([0]∓;σ)) = (π±3 )t + π∓2 .

Consider

0 // δ([1, 2]) o δ([0]±;σ)

����

// [2]× [1] o δ([0]±;σ)

����

// L([1], [2]) o δ([0]±;σ) // 0

π±4 [2] o L([1]; δ([0]±;σ))

We have

[2] o L([1]; δ([0]±;σ)) 6≤ L([1], [2]) o δ([0]±;σ)

since otherwise, passing to sGL, we would obtain

([2] + [−2])× L([−1], [0])⊗ σ ≤ (L([1], [2]) + [1]× [−2] + L([−2], [−1]))× [0]⊗ σ.

However [2]× L([−1], [0])⊗ σ does not occur on the right-hand side.
By Lemma 2.15 we infer that π±4 is a subquotient of [2] o L([1]; δ([0]±;σ)).
It follows from (6.6) that

(π±3 )t = π∓4 .

We infer that {πt5, πt6} = {π5, π6}. Observe that δ([−2, 0]) ⊗ σ ≤ sGL(π6) but
δ([0, 2])t⊗σ 6≤ sGL(π6) (and in fact δ([0, 2])t⊗σ 6≤ sGL(δ([0, 2])oσ)). This implies
that πt6 6= π6 and hence,

πt5 = π6.

It remains to show the non-unitarizability of π±3 , π
±
4 , π5, π6.

6.1.3. Consider

Π′ = [2] o L([0, 1];σ).

We will show that

(6.7) Π′ = π5 + π6.

Note that (Π′)t = Π′ and that π5 (and hence also π5 = πt6) occurs in Π′ with
multiplicity one.
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By (2.16) the only other possible irreducible subquotients of Π′ are π±1 , π±3
and π±4 . Clearly, π±1 cannot be a subquotient since its dual is not a subquotient.
Consider

µ∗(Π′) = (1⊗ [2] + [2]⊗ 1 + [−2]⊗ 1)

o
(

1⊗ L([0, 1];σ) + [0]⊗ [1] o σ + δ([−1, 0])⊗ σ + L([0], [1])⊗ σ
)
.

In particular,

s(nρ)(Π
′) = [2]⊗ L([0, 1];σ) + [−2]⊗ L([0, 1];σ) + [0]⊗ [2]× [1] o σ,

where nρ is defined by the requirement that ρ is a representation of GL(nρ, F
′).

Hence,

s(nρ)(Π
′) 6≥ [−2]⊗ δ([0, 1]±;σ).

It follows that π±3 6≤ Π′ and hence, π±4 6≤ Π′ by duality. The relation (6.7) follows.
The relation (6.1) now follows from (6.2), (6.5), (6.6) and (6.7).

6.1.4. Non-unitarizability of π6 and π5. We show now that the represen-
tations π6 and π5 are not unitarizable.

Let

δ1 = δ([−1, 1]) and Γ = δ1 o π6.

By Proposition 2.1 Γ contains the two irreducible subquotients

L([0, 2]; δ([−1, 1]±;σ)).

The equality δ([0, 2]) o σ = π6 + π+
1 + π−1 (see 2.10) implies that if we have an

irreducible non-tempered subquotient of

δ1 × δ([0, 2]) o σ,

then it is a subquotient of Γ. On the other hand,

δ1 × δ([0, 2]) o σ ≥ δ([−1, 2])× δ([0, 1]) o σ

= δ([−1, 2]) o
(
L([0, 1];σ) + δ([0, 1]+;σ) + δ([0, 1]−;σ)

)
= δ([0, 1]) o

(
L([−1, 2];σ) + δ([−1, 2]+;σ) + δ([−1, 2]−;σ)

)
.

From this we conclude that Γ contains the following non-tempered subquotients:

L([−1, 2], [0, 1];σ), L([−1, 2], δ([0, 1]±;σ)), L([0, 1], δ([−1, 2]±;σ)).

Therefore, the length of Γ is at least 7.
To deduce the non-unitarizability of π5 and π6 it suffices to show that the

multiplicity of τ := δ1 ⊗ π6 in µ∗(Γ) is less than 7. In fact, we show that it is 4.
By remark 2.16 we need to consider the multiplicity of τ in(

2 · δ1 ⊗ 1 + 2 · δ([0, 1])⊗ [1] + 2·[1]⊗ δ([0, 1])
:::::::::::

+ 1⊗ δ1
)
o µ∗(π6).

Recall:

(6.8)

µ∗(π6) = 1⊗ π6+

+[2]⊗ L([0, 1];σ) + [0]⊗ δ([1, 2]) o σ

+[0]× [2]⊗ [1] o σ + δ([−1, 0])⊗ [2] o σ
::::::::::::::::

+L([0], [1, 2])⊗ σ + δ([−1, 0])× [2]⊗ σ + δ([−2, 0])⊗ σ.
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Thus, the only relevant terms are

2 · τ + 2 · [1]× δ([−1, 0])⊗ δ([0, 1])× [2] o σ.

Decomposing (in the Grothendieck group)

[2]× δ([0, 1]) o σ = [2] o
(
L([0, 1];σ) + δ([0, 1]+;σ) + δ([0, 1]−;σ)

)
we note that π6 is not a subquotient of [2] o δ([0, 1]±;σ) (by (2.16)) and π6 occurs
with multiplicity one in [2] o L([0, 1];σ) = Π′ (by (6.7)).

In conclusion, the multiplicity of τ in µ∗(Γ) is 4, as claimed.

6.1.5. Non-unitarizability of π±4 , π±3 . The remaining, and most subtle,
part of the proof of the proposition is the non-unitarizability of π±4 , π±3 .

First, we compute

µ∗([2] o δ([0, 1]±;σ)) =

(1⊗ [2] + [2]⊗ 1 + [−2]⊗ 1)o(
1⊗ δ([0, 1]±;σ) + [1]⊗ δ([0]±;σ) + δ([0, 1])⊗ 1

)
= 1⊗ [2] o δ([0, 1]±;σ)

+[2]⊗ δ([0, 1]±;σ) + [−2]⊗ δ([0, 1]±;σ) + [1]⊗ [2] o δ([0]±;σ)

+[2]× [1]⊗ δ([0]±;σ) + [−2]× [1]⊗ δ([0]±;σ) + δ([0, 1])⊗ [2] o σ

+δ([0, 2])⊗ 1 + L([2]; [0, 1])⊗ 1 + [−2]× δ([0, 1])⊗ 1.

Now the above formula, (6.5) and (6.4) imply

(6.9)

µ∗(π±3 ) = 1⊗ π±3
+[−2]⊗ δ([0, 1]±;σ) + [1]⊗ [2] o δ([0]±;σ)

+L([1], [2])⊗ δ([0]±;σ) + [−2]× [1]⊗ δ([0]±;σ) + δ([0, 1])⊗ [2] o σ

+L([2]; [0, 1])⊗ σ + [−2]× δ([0, 1])⊗ σ.

Applying duality to this and changing ∓ by ±, we get

(6.10)

µ∗(π±4 ) = 1⊗ π±4
+[2]⊗ L([1]; δ([0]±;σ)) + [−1]⊗ [2] o δ([0]±;σ)

+δ([−2,−1])⊗ δ([0]±;σ) + [2]× [−1]⊗ δ([0]±;σ) + L([−1], [0])⊗ [2] o σ

+L([−2,−1], [0])⊗ σ + [2]× L([−1], [0])⊗ σ.

(Alternatively, we could have also used the relation

[2] o L([1]; δ([0]∓;σ)) = π∓4 + π∓2

to compute the above Jacquet module formula.)

6.1.6. We shall now describe the composition series of the representation

δ([1, 2]) o δ([0]±;σ).

Observe

π±1 + π±4 ≤ δ([1, 2]) o δ([0]±;σ).

We prove that

π6 ≤ δ([1, 2]) o δ([0]±;σ)
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using Lemma 2.15 applied to the diagram

0 // δ([0, 2]) o σ

����

// δ([1, 2])× [0] o σ

����

// L([1, 2], [0]) o σ // 0

π6 δ([1, 2]) o δ([0]±;σ)

by noting that
δ([1, 2]) o δ([0]±;σ) 6≤ L([1, 2], [0]) o σ.

For otherwise, passing to sGL and considering the terms whose exponents are non-
negative, we would get

δ([1, 2])× [0]⊗ σ ≤ L([1, 2], [0])⊗ σ
which is impossible.

This implies that each of δ([1, 2]) o δ([0]±;σ) has length ≥ 3. The same will
be therefore true for the dual representations L([1], [2]) o δ([0]∓;σ). The obvious
decomposition (in the Grothendieck group)

Π(0,1,2) =δ([1, 2]) o δ([0]+;σ) + δ([1, 2]) o δ([0]−;σ)+

L([1], [2]) o δ([0]−;σ) + L([1], [2]) o δ([0]+;σ),

and the fact that the (total) length of Π(0,1,2) is 12, imply that all representations
on the right-hand side have length 3. Therefore, in particular

(6.11) δ([1, 2]) o δ([0]±;σ) = π±4 + π6 + π±1 .

6.1.7. Consider
Γ± := δ1 o π±4

where as before δ1 = δ([−1, 1]). First we shall determine the following multiplicity:

Lemma 6.2. The multiplicity of τ± := δ1 ⊗ π±4 in µ∗(Γ±) is four.

Proof. By Remark 2.16 and the formula (6.10) for µ∗(π±4 ) we need to compute
the multiplicity of τ± in

2 · (δ1 ⊗ 1) o (1⊗ π±4 ) + 2 · (δ([0, 1])⊗ [1]) o ([−1]⊗ [2] o δ([0]±;σ))

= 2 · τ± + 2 · δ([0, 1])× [−1]⊗ [1]× [2] o δ([0]±;σ)).

Clearly, δ1 occurs with multiplicity one in δ([0, 1])× [−1]. Decomposing

[1]× [2] o δ([0]±;σ) = δ([1, 2]) o δ([0]±;σ) + L([1], [2]) o δ([0]±;σ)

we note that π±4 occurs with multiplicity one in δ([1, 2]) o δ([0]±;σ). However, by
(6.11) (passing to the dual), π±4 does not occur in L([1], [2]) o δ([0]±;σ).

In conclusion, the multiplicity of τ± in µ∗(Γ±) is 4, as required. �

6.1.8. Now we shall determine several irreducible subquotients of Γ±.
To that end we need to introduce some notation. Let θ ∈ T cl and ∆ a segment

of cuspidal representations such that ∆ˇ = ∆ and δ(∆)oθ is reducible. Then, it de-
composes into a sum of two nonequivalent irreducible tempered subrepresentations
which will be denoted by

τ(∆±; θ).2

2One can be more specific in description of these representations, as in [68], but we do not
need these details for the purpose of this paper.
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First, by Proposition 2.1 we get that the following two irreducible representations

L([1, 2]; τ([−1, 1]µ; δ([0]±;σ))), µ ∈ {±}
are subquotients of Γ±.

It will require supplementary work to determine additional irreducible subquo-
tients of Γ±. First, we shall list some natural candidates for subquotients.

Summing the identity (6.11) for ε = 1 and −1 we get

(6.12) δ([1, 2])× [0] o σ = π+
1 + π−1 + π+

4 + π−4 + 2 · π6.

Observe that

δ1 × δ([1, 2])× [0] o σ ≥ δ([−1, 2])× [1]× [0] o σ.

We know that the left-hand side of the above inequality has among others the
following non-tempered irreducible subquotients:

L([0, 2]; δ([−1, 1]±;σ)),

L([−1, 2], [1]; δ([0]±;σ)),

L([−1, 2]; δ([0, 1]±;σ)),

L([−1, 2], [0, 1];σ),

L([1]; τ([0]ε1 ; δ([−1, 2]ε2 ;σ))), ε1, ε2 ∈ {±}.
For brevity denote

Θε1,ε2 = τ([0]ε1 ; δ([−1, 2]ε2 ;σ))

(a tempered representation).
Multiplying (6.11) by δ1 we get

(6.13)
δ1 × δ([1, 2]) o δ([0]±;σ) = δ1 × (π±4 + π6 + π±1 )

≥ δ([−1, 2])× [1] o δ([0]±;σ).

Then, the left-hand side of (6.13) has among others the following irreducible sub-
quotients:

L([0, 2]; δ([−1, 1]µ;σ)), µ ∈ {±},
L([−1, 2], [1]; δ([0]±;σ)).

Now we prove

Lemma 6.3. We have

L([−1, 2], [1]; δ([0]±;σ)) ≤ Γ±.

Proof. We will use Lemma 2.15 for the diagram

0 // L([−1, 1], [1, 2]) o ω± // δ1 × δ([1, 2]) o ω±

����

// δ([−1, 2])× [1] o ω±

����

// 0

Γ± L([−1, 2], [1];ω±)

where ω± = δ([0]±;σ). It remains to show that

(6.14) Γ± 6≤ L([−1, 1], [1, 2]) o δ([0]±;σ).

Suppose on the contrary that this is not the case. Then, we would get

sGL(Γ±) ≤ sGL(L([−1, 1], [1, 2]) o δ([0]±;σ)).
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Now, on the one hand, by the formula (6.10) we have

sGL(Γ±) ≥ 2 · δ([0, 1])× [1]× [2]× L([−1], [0])⊗ σ
and hence,

sGL(Γ±) ≥ 2 · δ([0, 1])× δ([1, 2])× L([−1], [0])⊗ σ.
In particular,

sGL(Γ±) ≥ 2 · L([−1], [0], [0, 1], [1, 2])⊗ σ.
On the other hand, by (2.14), the only terms in sGL(L([−1, 1], [1, 2]) o δ([0]±;σ))
that can dominate the above term are

[0]×
(
L([−1, 1], [1, 2]) + L([0, 1], [2])× [−1]× [1] + L([0, 1], [−1])× L([1], [2])

)
.

Clearly,

L([−1], [0], [0, 1], [1, 2]) 6≤ [0]× L([−1, 1], [1, 2])

(since the right-hand has a segment of length three). Therefore,

2·L([−1], [0], [0, 1], [1, 2]) ≤ [0]×
(
L([0, 1], [2])×[−1]×[1]+L([0, 1], [−1])×L([1], [2])

)
.

By passing to the Zelevinsky dual

2·Z([−1], [0], [0, 1], [1, 2]) ≤ [0]×
(
Z([0, 1], [2])×[−1]×[1]+Z([0, 1], [−1])×Z([1], [2])

)
.

The Jacquet module of the left-hand side contains

2 · [1]⊗ Z([−1], [0], [0, 1], [2]).

On the other hand, the part of the Jacquet module of the right-hand side of the
form [1]⊗ ∗ is

[1]⊗ [0]× Z([0, 1], [2])× [−1]

which contains [1] ⊗ Z([−1], [0], [0, 1], [2]) with multiplicity one. We get a contra-
diction. Therefore, (6.14) holds, and the lemma now follows from Lemma 2.15. �

At this stage we know that the length of Γ± is at least three.

6.1.9. We exhibit two more irreducible subquotients of Γ±. Recall

(6.15)
∑

ε1,ε2∈{±}

L([1]; Θε1,ε2) ≤ δ1 × δ([1, 2])× [0] o σ.

Next, we note that none of the irreducible representations L([1]; Θε1,ε2), ε1, ε2 ∈
{±} is a subquotient of δ1 o π6.

Indeed, the Jacquet module of δ1oπ6 does not admit terms of the form [−1]⊗ −,
for such terms do not show up in neither M∗(δ1) nor µ∗(π6).

It now follows from (6.12) that

(6.16)
∑

ε1,ε2∈{±}

L([1]; Θε1,ε2) ≤ Γ+ + Γ−.

We shall now prove that each term on the right-hand side has precisely two terms
from the left-hand side as subquotients.

We analyse in the Jacquet module of Γ± terms of the form [−1]⊗Θε1,ε2 .
Since [−1]⊗− does not occur in M∗(δ1), we only need to consider the multi-

plicity of [−1]⊗Θε1,ε2 in (1⊗ δ1)oµ∗(π±4 ), hence (in view of (6.10)) in [−1]⊗ δ1×
[2] o δ([0]±;σ). Equivalently, we need to consider the multiplicity of Θε1,ε2 in the
representation δ1 × [2] o δ([0]±;σ) .
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Observe that the Jacquet module of each four representations Θε1,ε2 contains
[0]× δ([−1, 2])⊗ σ as a subquotient (since Θε1,ε2 ↪→ [0]× δ([−1, 2]) o σ).

We claim that the multiplicity of [0]×δ([−1, 2])⊗σ in sGL(δ1× [2]oδ([0]±;σ))
is two. (It can only come from the part 2 · δ1 × [2] × [0] ⊗ σ.) Therefore, at most
two of L([1]; Θε1,ε2) can show up in each of Γ±. Since they show up four times in
Γ+ + Γ−, this implies that they show up twice in each of Γ±.

In conclusion, we have proved that the length of Γ± is at least five.
By Lemma 2.12 we deduce that the representations π±4 and π±3 are not unita-

rizable.

6.2. x = (0, 1, 1) and α = 0

Proposition 6.4. Assume α = 0. Then,

(1) In the Grothendieck group we have

(6.17) Π(0,1,1) = π+
1 + π−1 + π+

2 + π−2 + π+
3 + π−3 + 2π4

where

π±1 = L([1], [1], δ([0]±;σ)), π±2 = δ([−1, 1]±;σ),

π±3 = L([1]; δ([0, 1]±;σ)), π4 = L([1], [0, 1];σ).

(2) π4 = [1] o L([0, 1];σ).
(3) (π±1 )t = π∓2 , (π+

3 )t = π−3 , πt4 = π4.
(4) The representations π±1 , π

±
2 , π

±
3 are unitarizable.

(5) The representation π4 is not unitarizable.

Proof. Write Π(0,1,1) in the Grothendieck group as
(6.18)

[1]o
(
L([1]; δ([0]+;σ))+L([1]; δ([0]−;σ))+2L([0, 1];σ)+δ([0, 1]+;σ)+δ([0, 1]−;σ)

)
.

The representations [1]oδ([0, 1]±;σ) are reducible by (6) of Proposition 2.4 and
(4) of Proposition 3.10 (the partially defined function attached to δ([0, 1]+;σ) takes
the same values on Jordρ(δ([0, 1]±;σ)) = {1, 3}, and the same holds for the partially
defined function attached to δ([0, 1]−;σ)). Hence, by duality, [1]oL([1]; δ([0]±;σ))
are also reducible. These four representations are in the ends of the complementary
series. Therefore, all the subquotients there are unitarizable. Now Proposition 2.1
gives the following irreducible (unitarizable) subquotients

π±1 , π±3 .

Furthermore,

δ([−1, 1]) o σ = π+
2 ⊕ π

−
2 , δ([−1, 1])t o σ = π+

1 ⊕ π
−
1 .

This completes the unitarizability assertions.
From (2.21) we know that [1] × [1] ⊗ δ([0]ε;σ) is (a direct summand) in the

Jacquet module of δ([−1, 1]ε;σ) (and this term in the Jacquet module characterises
δ([−1, 1]ε;σ)). This implies that [−1]× [−1]⊗ δ([0]−ε;σ) is in the Jacquet module
of δ([−1, 1]ε;σ)t. From this follows

(π±2 )t = π∓1 .

This implies that the multiplicity of each δ([−1, 1]ε;σ) and δ([−1, 1]ε;σ)t in Π(0,1,1)

is one. Furthermore, (2.21) implies that [1] ⊗ δ([0, 1]ε;σ) is a subquotient of the
Jacquet module of δ([−1, 1]ε;σ).
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Provisionally, set

Π′ = [1] o L([0, 1];σ).

(We will show that in fact Π′ is irreducible, i.e., Π′ = π4.) Note that (Π′)t = Π′.
We have

µ∗(Π′) = (1⊗ [1] + [1]⊗ 1 + [−1]⊗ 1)o(
1⊗ L([0, 1];σ) + [0]⊗ [1] o σ + δ([−1, 0])⊗ σ + L([0], [1])⊗ σ

)
.

Now

s(nρ)(Π
′) = [1]⊗ L([0, 1];σ) + [−1]⊗ L([0, 1];σ) + [0]⊗ [1]× [1] o σ

(recall that nρ is defined by requirement that ρ is a representation of GL(nρ, F
′)).

Obviously, neither of [1] ⊗ δ([0, 1]±;σ) is a subquotient of Π′. This implies that
neither of δ([−1, 1]±;σ) is a subquotient of Π′.

Furthermore, neither of [−1] ⊗ δ([0, 1]±;σ) is a subquotient of the Jacquet
module of Π′. This implies that neither of π±3 is a subquotient of Π′. These two
observations and (2.16) imply that Π′ is irreducible (hence, equals to π4). Now we
can conclude that (π+

3 )t is either π+
3 or π−3 . The formula (6.4) implies that in fact

(π+
3 )t = π−3 .

Next we show that

(6.19) [1] o δ([0, 1]±;σ) = π±2 + π±3 .

Indeed, π±3 is the Langlands quotient of [1] o δ([0, 1]±;σ). By (2.16) all other
irreducible subquotient are tempered. Now δ([0, 1])×[1]⊗σ occurs with multiplicity
two in sGL(π+

2 ), sGL([1]oδ([0, 1]±;σ)) and sGL(Π(0,1,1)). Therefore, π+
2 occurs with

multiplicity one in both [1]o δ([0, 1]+;σ) and Π(0,1,1). Since both [1]o δ([0, 1]±;σ)
are reducible, we conclude (6.19).

By passing to the dual, we conclude (6.17) from (6.18).
Finally, the non-unitarizability of π4 = Π′ follows by deforming it to the repre-

sentation [2] o L([0, 1];σ), which by Proposition 6.1 contains the non-unitarizable
irreducible representation L([2], [0, 1];σ) as a subquotient. �

6.3. x = (0, 0, 1) and α = 0

Proposition 6.5. Assume α = 0. Then,

(1) In the Grothendieck group we have

Π(0,0,1) = π+
1 + π−1 + 2π+

2 + 2π−2 + π+
3 + π−3 ,

where

π±1 = L([1], [0] o δ([0]±;σ)), π±2 = L([0, 1]; δ([0]±;σ)), π±3 = [0] o δ([0, 1]±;σ).

(2) π±3 are irreducible and π±1 = [0] o L([1]; δ([0]±;σ)).
(3) (π±1 )t = π∓3 , (π±2 )t = π∓2 .
(4) All irreducible subquotients of Π(0,0,1) are unitarizable.

Proof. Write Π(0,0,1) as

[0]o
(
L([1]; δ([0]+;σ))+L([1]; δ([0]−;σ))+2L([0, 1];σ)+δ([0, 1]+;σ)+δ([0, 1]−;σ)

)
.

The representations π±3 are irreducible (since Jordρ(δ([0, 1]±;σ)) = {1, 3}). The
same is true for [0] o L([1]; δ([0]+;σ)) by duality.
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It remains to consider Π′ := [0] o L([0, 1];σ). Observe that

sGL(Π′) = 2 · [0]×
(
δ([−1, 0]) + L([0], [1])

)
⊗ σ,

which is a length four representation. By Proposition 2.1, both representations π±2
are irreducible subquotients of Π′. Observe that

π±2 ↪→ δ([−1, 0]) o δ([0]±;σ) ↪→ δ([−1, 0])× [0] o σ

∼= [0]× δ([−1, 0]) o σ ↪→ [0]× [0]× [−1] o σ ∼= Π(0,0,1).

This implies that each of sGL(L([0, 1]; δ([0]±;σ))) has length at least two. Therefore,
we have

Π′ = π+
2 + π−2

in the Grothendieck group. In this way we have proved (1) and (2).
Furthermore, (2) and corank two case imply (π±1 )t = π∓3 . Now we shall prove

(π±2 )t = π∓2 . For this, write

(6.20) Π(0,0,1) = Π+
1 + Π−1 + Π+

2 + Π−2 ,

where

Π±1 := δ([0, 1]) o δ([0]±;σ), Π±2 := L([0], [1]) o δ([0]±;σ) = (Π∓1 )t.

Obviously π±1 ≤ Π±2 . This implies by duality π±3 ≤ Π±1 . Obviously π±2 ≤ Π±1 .
Therefore, π±2 + π±3 ≤ Π±1 . Now (6.20) and the fact that (total) length of Π(0,0,1)

is eight, implies

(6.21) π±2 + π±3 = Π±1 ,

and after applying duality

(π±2 )t + π±1 = Π±2 .

We have

[0]× [1] o δ([0]±;σ) = Π±2 + Π±1 .

Now (3.10) and what we proved about duality up to now, imply

[0] o
(
L([1]; δ([0]±;σ)) + L([0, 1];σ) + δ([0, 1]±;σ)

)
= (π±2 )t + π±1 + π±2 + π±3 ,

i.e.

π±1 + [0] o L([0, 1];σ) + π±3 = (π±2 )t + π±1 + π±2 + π±3 .

Since

π+
2 + π−2 ≤ [0] o L([0, 1];σ),

the above equation implies that the above inequality is actually equality. Therefore,

��π
±
1 + π+

2 + π−2 +��π
±
3 = (π±2 )t +��π

±
1 + π±2 +��π

±
3 .

This implies

(π±2 )t = π∓2 .

The proof of (3) is now complete.
Complementary series in rank 2, and then unitary parabolic induction imply

(4). �
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6.4. x = (0, 0, 0) and α = 0

The tempered unitarizable representation Π(0,0,0) is of length two and splits as

[0]× [0] o δ([0]+;σ)⊕ [0]× [0] o δ([0]−;σ).

We have ([0]× [0] o δ([0]+;σ))t = [0]× [0] o δ([0]−;σ).





CHAPTER 7

Introductory Remarks on Unitarizability and
Corank 2

In this and the following chapter we fix ρ ∈ Csd and σ ∈ Ccl. As usual, let
α ∈ 1

2Z≥0 be such that

[α](ρ) o σ

is reducible. We will suppress ρ from the notation.
We shall determine unitarizability of irreducible subquotients of

Π(x1,...,xk) = [x1]× · · · × [xk] o σ

when k ≤ 3 and

0 ≤ x1 ≤ · · · ≤ xk.

Remark 7.1. Suppose that we are in the critical case.

(1) A consequence of the analysis of chapters 3–6 is that the unitarizability
of irreducible subquotients of Πx, k ≤ 3 is preserved under DL duality

(2) Suppose further that for some indices i, j (resp., index i), [xi]× [xj ] (resp.
[xi]o σ) is reducible, necessarily of length two. Then, we get correspond-
ingly a decomposition in the Grothendieck group

Πx = Π′ + Π′′

with Π′t = Π′′. The first part implies that if one of Π′ and Π′′ contains a
non-unitarizable irreducible subquotient, then so does the other. We shall
use this simple observation in the sequel.

Let π be an irreducible subquotient of Π(x1,...,xk).
Trivially, if k = 0, then π = σ, which is obviously unitarizable.

7.1. Corank 1

Let k = 1. Then, π is unitarizable if and only if

x1 ≤ α.

For 0 ≤ x1 < α, π = [x1] o σ, while for x1 = α we have two non-equivalent ir-
reducible (unitarizable) subquotients. In the case α > 0, they are δ([α];σ) and
L([α];σ), while for α = 0, they are δ([0]+;σ) and δ([0]−;σ). These two representa-
tions are the only subquotients which are unitarizable for α = 0.

79
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7.2. Corank 2

The following proposition is probably well known to experts.1 For convenience
we provide the proof, as we will use the argument repeatedly in the sequel.

Proposition 7.2. The irreducible unitarizable subquotients of Πx when x =
(x1, x2) ∈ R2

++, are the following.

(1) (α > 1) All irreducible subquotients when x1 + 1 ≤ x2 ≤ α.
(2) (α 6= 1

2 ) All irreducible subquotients when x1 + x2 ≤ 1.

(3) (α = 1
2 ) All irreducible subquotients when x2 ≤ 1

2 .
(4) (α > 0) The representations δ([α, α+ 1];σ) and L([α], [α+ 1];σ).

Before proving the proposition, we make some basic remarks.

7.3. General principles related to graphic interpretations (cf. §2.15)

It is advantageous to use drawings that describe regions of unitarizability for
Π(x,y). (It is enough to consider the quadrant R2

+ := {(x, y) ∈ R2 : x, y ≥ 0}.
In fact the picture is also symmetric with respect to interchanging x and y.) The
lines of reducibility (singular lines) will be denoted by dashed or solid lines. The
complement of the singular lines is partitioned into connected components. Each
connected component consists of irreducible representations Π(x,y) which are either
all unitarizable (complementary series) or all non-unitarizable. The former are
denoted by shaded regions and the latter by blank regions. The boundary of the
shaded regions are denoted by thick solid lines – all the irreducible subquotients
there are unitarizable. Intersection of singular lines are critical points. These
vertices are denoted by balls (white, gray or black), according to unitarizability of
irreducible subquotients (which is known). The singular line segments (or rays)
delimited by critical points (connected components of lines) correspond to two
continuous families of hermitian representations which are either all unitarizable or
all non-unitarizable. (For example, in Figure 1, to the open segment connecting
(0, 1) and (α, α − 1) corresponds the families δ([x + 1, x]) o σ, 0 < x < α − 1 and
L([x+ 1], [x]) o σ, 0 < x < α− 1.)

Unbounded regions and unbounded segments always consist entirely of non-
unitarizable representations.

In the rest of this chapter we prove Proposition 7.2.

7.4. Proof of Proposition 7.2 for α ≥ 1

We prove Proposition 7.2 in the case α ≥ 1 using Figure 1.

7.4.1. Legend (for Figure 1 and all subsequent drawings).

coordinate axes, or symmetry axis;

all irreducible subquotients are non-unitarizable;
unitarizable and non-unitarizable irreducible subquotients show up;
all irreducible subquotients are unitarizable;

only hermitian families of non-unitarizable representations show up;

1Classifications of the unitary duals of split rank two classical groups in the non-archimedean
case were obtained in [44] (unramified case), [46], [17], [19], [32] among others
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y = 0

x = 0 symmetry line y = x

y = x− 1

y = α

x = α y = x+ 1

(α, α) (α+ 1, α)

(1, 0)

(α, α− 1)

x+ y = 1

C0

C1

Figure 1. Unitarizability for Π(x,y) (case α = 3)

both complementary series and hermitian family of non-unitarizable
representations show up;

all irreducible subquotients are unitarizable (i.e. all belong to com-
plementary series);

two-dimensional complementary series;

two-dimensional regions of non-unitarizable representations.

Two-dimensional connected regions containing the origin will be denoted always by
C0 (they will always consist of unitarizable representations).

7.4.2. The region C0 is unitarizable since Π(0,0) is unitarizable. Furthermore,
if α > 1, the region C1 is unitarizable since Π(x,0) = [0] o ([x] o σ) is unitarizable
for any 0 ≤ x < α.

Because of the point (α, α) where all irreducible subquotients are non-uni-
tarizable (by Proposition 3.6), it remains to explain why the hermitian families
corresponding to the segment from (α, α− 1) to (α+ 1, α) are not unitarizable. At
the end of these families are the representations δ([α, α+1])oσ and L([α], [α+1])oσ.
Since both representations at the end of two families contain a non-unitarizable
irreducible subquotient by §3.4.1, this implies non-unitarizability of both families,
and completes the proof of Proposition 7.2 in this case.
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y = 0

x = 0 symmetry line y = x

x+ y = 1

y = 1
2

y = x− 1

x = 1
2 y = x+ 1

( 1
2 ,

1
2 )

( 3
2 ,

1
2 )

C0

Figure 2. Unitarizability for Π(x,y) (case α = 1
2 )

7.5. Proof of Proposition 7.2 for α = 1
2

Next we prove the proposition in the case α = 1
2 – see Figure 2.

As before, the region C0 is unitarizable, since Π(0,0) is unitarizable.
For non-unitarizability, we need to consider only two segments. The first one is

the vertical line from (1
2 ,

1
2 ) to ( 3

2 ,
1
2 ). At the end of the two families corresponding to

this segment are the representations [ 3
2 ]oδ([ 1

2 ];σ) and [3
2 ]oL([ 1

2 ];σ). Since both of
these representations contain non-unitarizable irreducible subquotient(s) by §3.4.1,
we conclude that both hermitian families are non-unitarizable. Now consider the
segment from ( 1

2 ,
1
2 ) to (1, 0), and from (1, 0) to ( 3

2 ,
1
2 ). Since at (1, 0) the ends of the

two families of representations are irreducible, these two families extend to ( 3
2 ,

1
2 )

(as families of hermitian irreducible representations). They end with δ([ 1
2 ,

3
2 ]) o σ

and L([ 1
2 ], [ 3

2 ])oσ. Since both representations contain non-unitarizable irreducible
subquotients (again by 3.4.1), this implies the non-unitarizability of both families,
and completes the proof of (2).

7.6. Proof of Proposition 7.2 for α = 0

Finally, we consider the case α = 0 using Figure 3.
The region C3 is unitarizable, since Π(x,x)

∼= ([x]× [−x])o σ is unitarizable for

all 0 ≤ x < 1
2 .

The non-unitarizability of the remaining part is obvious (all connected compo-
nents are unbounded).
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y = 0

x = 0 symmetry line y = x

y = x− 1

y = x+ 1

(0, 0) (1, 0)

x+ y = 1C3

Figure 3. Unitarizability for Π(x,y) (case α = 0)





CHAPTER 8

Unitarizability in Corank 3

8.1. One-parameter complementary series

Proposition 8.1. In Table 1 we list the one-parameter families Πx, x ∈ R
emanating from unitarizable irreducible representations of a maximal Levi subgroup
with critical parameters. For each pair of a representation and its dual we record
the irreducibility points for x ≥ 0. When irreducible, Πx, x ≥ 0 is unitarizable up
to the first point of reducibility, and non-unitarizable otherwise. When reducibility
occurs at 0, there is no complementary series.

Proof. The reducibility part follows from the previous chapters. The unitarity
statement is clear if there is a unique reducibility point for x ≥ 0. Otherwise, since
there are at most 3 of them, it is enough to exhibit an irreducible non-unitarizable
subquotient at the second reducibility point (from 0 upwards). In Table 2 we list
for all the families where there is more than one reducibility point for x ≥ 0, the
representation Πx0

at the second reducibility point x0 > 0 as well as an irreducible
non-unitarizable subquotient π. (By duality, it is enough to consider the second
column in Table 1.) �

Next, we consider unitarizability of families of hermitian irreducible represen-
tations induced from irreducible, non-unitarizable representations of maximal Levi
subgroups.

N◦ πx πtx reducibility points cases
1. νxδ([−1, 1]) o σ νxL([−1], [0], [1]) o σ |α− 1| , α, α+ 1 all

2. νxδ([− 1
2 ,

1
2 ]) o δ([α];σ) νxL([− 1

2 ], [ 1
2 ]) o L([α];σ)

∣∣α± 3
2

∣∣ , α+ 1
2 α 6= 0

3. νxδ([− 1
2 ,

1
2 ]) o L([α];σ) νxL([− 1

2 ], [ 1
2 ]) o δ([α];σ)

∣∣α± 3
2

∣∣ , α− 1
2 α 6= 0

4. νxδ([− 1
2 ,

1
2 ]) o δ([0]±;σ) νxL([− 1

2 ], [ 1
2 ]) o δ([0]∓;σ) 1

2 ,
3
2 α = 0

5. [x] o δ([α, α+ 1];σ) [x] o L([α], [α+ 1];σ) |α− 1| , α+ 2 α 6= 0
6. [x] o δ([0, 1]±;σ) [x] o L([1]; δ([0]∓;σ)) 1, 2 α = 0
7. [x] o L([0, 1];σ) [x] o L([0, 1];σ) 0, 2 α = 0
8. [x] o δs.p.([α− 1], [α];σ) [x] o L([α− 1, α];σ) |α− 2| , α+ 1 α > 1
9. [x] o L([α− 1]; δ([α];σ)) [x] o L([α− 1], [α];σ) |α− 2| , α, α+ 1 α > 1
10. [x] o τ([0]+; δ([1];σ)) [x] o L([1]; [0] o σ) 1, 2 α = 1
11. [x] o τ([0]−; δ([1];σ)) [x] o L([0, 1];σ) 1, 2 α = 1
12. [x] o δ([− 1

2 ,
1
2 ]+;σ) [x] o L([ 1

2 ], [ 1
2 ];σ) 1

2 ,
3
2 α = 1

2
13. [x] o δ([− 1

2 ,
1
2 ]−;σ) [x] o L([ 1

2 ]; δ([ 1
2 ];σ)) 3

2 α = 1
2

14. [x] o [0] o δ([0]+;σ) [x] o [0] o δ([0]−;σ) 1 α = 0

Table 1. Irreducibility points for corank one complementary series

85
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Πx0
π x0 cases

δ([α− 1, α+ 1]) o σ L([α− 1, α+ 1];σ) α α ≥ 1
δ([ 1

2 ,
5
2 ]) o σ L([ 1

2 ,
5
2 ];σ) 3

2 α = 1
2

δ([0, 2]) o σ L([0, 2];σ) 1 α = 0
δ([α, α+ 1]) o δ([α];σ) L([α, α+ 1]; δ([α];σ)) α+ 1

2 α ≥ 1
δ([ 3

2 ,
5
2 ]) o δ([ 1

2 ];σ) L([ 3
2 ,

5
2 ]; δ([ 1

2 ];σ)) 2 α = 1
2

δ([α− 1, α]) o L([α];σ) L([α− 1, α], [α];σ) α− 1
2 α > 1

δ([2, 3]) o L([1];σ) L([2, 3], [1];σ) 5
2 α = 1

δ([ 1
2 ,

3
2 ]) o L([ 1

2 ];σ) L([ 1
2 ,

3
2 ], [ 1

2 ];σ) 1 α = 1
2

δ([1, 2]) o δ([0]±;σ) L([1, 2]; δ([0]±;σ)) 3
2 α = 0

[α+ 2] o δ([α, α+ 1];σ) L([α+ 2], δ([α, α+ 1];σ)) α+ 2 α 6= 0
[2] o δ([0, 1]±;σ) L([2]; δ([0, 1]±;σ) 2 α = 0
[2] o L([0, 1];σ) L([2], [0, 1];σ) 2 α = 0
[α+ 1] o δs.p.([α− 1], [α];σ) L([α+ 1]; δs.p.([α− 1], [α];σ)) α+ 1 α > 1
[α] o L([α− 1]; δ([α];σ)) L([α− 1, α]; δ([α];σ)) α α > 1
[2] o τ([0]±; δ([1];σ)) L([2]; τ([0]±; δ([1];σ))) 2 α = 1
[ 3
2 ] o δ([− 1

2 ,
1
2 ]+;σ) L([ 3

2 ]; δ([− 1
2 ,

1
2 ]+;σ)) 3

2 α = 1
2

Table 2. Non-unitarizable irreducible subquotients at the second
reducibility point x0

Lemma 8.2.

(1) Let πx = L([x − 1, x], [x + 1]) o σ (resp. πx = L([x − 1], [x, x + 1]) o σ),
x ≥ 0. Then, πx is reducible if and only if x ∈ {|α − 1|, α, α + 1}. If πx
is irreducible, then it is unitarizable if and only if 0 ≤ x < α− 1.

(2) For α > 0 denote πx = [x] o L([α, α + 1];σ) (resp. πx = [x] o L([α +
1]; δ([α];σ)), x ≥ 0. Then, πx is reducible if and only if x ∈ {|α−1|, α, α+
2}. If πx is irreducible, then it is always non-unitarizable.

Proof. In (1), the reducibility of πx is determined by criterion (2.23). The
non-unitarizability of the representations L([0, 1], [1];σ) for α = 0, L([ 1

2 ,
3
2 ], [ 1

2 ];σ)

(resp. L([ 3
2 ]; δ([− 1

2 ,
1
2 ]+;σ))) for α = 1

2 , L([2], τ([0]−; δ([1];σ))) (resp. L([1, 2]; [0]o
σ)) for α = 1 and L([α − 1], [α, α + 1];σ) (resp. L([α − 1], [α + 1]; δ([α];σ))) for
α > 1, imply the non-unitarizability claimed in (1). Unitarizability in (1) follows
in a simple way.

The non-unitarizability of the representations L([|α − 1|], [α, α + 1];σ) and its
DL dual for α 6= 1, L([1, 2]; [0]o σ) and its DL dual for α = 0, and any irreducible
subquotient of Π(α,α,α+1) for α ≥ 1, implies the non-unitarizability claimed in
(2). �

8.2. Regular components, unitarizability

For convenience, we say that a point x ∈ R3 is strongly unitary (resp., strongly
non-unitary) if all irreducible subquotients of Πx are unitarizable (resp., non-
unitarizable). This property depends only on the W -orbit of x where W is the
group of signed permutations. The set of strongly unitary points is closed in R3.

Consider the singular affine hyperplanes

xi = ±α, i = 1, 2, 3 xi ± xj = ε, 1 ≤ i < j ≤ 3, ε = ±1.
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We say that x ∈ R3 is regular if it is not on any one of the singular affine hy-
perplanes. We denote by R3

reg the set of regular points. Thus x ∈ R3
reg if and

only if Πx is irreducible, in which case x is either strongly unitary or strongly
non-unitary. The set of strongly unitary points in R3

reg is a (possibly empty)

union of connected components of R3
reg which will be called unitary. Clearly,

the set of unitary connected components is W -invariant. Recall that we defined
R3

++ = {(x1, x2, x3) : 0 ≤ x1 ≤ x2 ≤ x3}. Denote

R3
reg,++ = R3

reg ∩ R3
++.

The (unitary) connected components of R3
reg,++ are in one-to-one correspondence

with the W -orbits of (unitary) connected components of R3
reg. Therefore, it is

enough to consider connected components of R3
reg,++.

Proposition 8.3. The following connected components of R3
reg,++ are unitary.

For α ≥ 1 :

x2 + x3 < 1,(8.1a)

x1 + x2 < 1, x3 − x2 > 1, x3 < α, (α > 1)(8.1b)

x1 + x2 < 1, x1 + x3 > 1, x3 − x1 < 1, x3 < α(8.1c)

x2 − x1 > 1, x3 − x2 > 1, x3 < α, (α > 2).(8.1d)

(The constraint x3 < α in (8.1c) is redundant unless α = 1.)
For α = 1

2 :

(8.2) x3 <
1
2 .

Consequently, any x ∈ R3
++ in the closure of the above regions (i.e., changing

strict inequalities to non-strict ones) is strongly unitary.

Proof. First note that for α ≥ 1, the non-empty regions among (8.1a)–(8.1d)
are distinct connected components of R3

reg,++.
Suppose that α 6= 0. Then, Π0 is unitarizable, and thus, so is its connected

component in R3
reg,++ which is given by (8.1a) if α ≥ 1 and by (8.2) if α = 1

2 .
Assume now that α ≥ 1.
We start with the complementary series πx3 = [x3]oσ which is irreducible and

unitarizable for 0 ≤ x3 < α.

(1) Consider the complementary series [x1]×[−x1], 0 ≤ x1 <
1
2 for the general

linear group. By parabolic induction we get a unitarizable representation
[x1]× [−x1] o πx3

, Taking 1
2 < x3 < min( 3

2 , α) and |1− x3| < x1 <
1
2 we

get an irreducible unitarizable representation Π(x1,−x1,x3)
∼= Π(x1,x1,x3).

The connected component of

{(x1, x1, x3) : 1
2 < x3 < min( 3

2 , α), |1− x3| < x1 <
1
2}

in R3
reg,+ is (8.1c).

(2) Assume α > 1 and fix 1 < x3 < α. Clearly (0, 0, x3) ∈ R3
reg,++ is

(strongly) unitary. The region (8.1b) is the connected component of
(0, 0, x3).

(3) Assume that α > 2. Fixing 2 < x3 < α we construct a complementary
series [x2] o πx3

for 0 ≤ x2 < x3 − 1. Fixing 1 < x2 < x3 − 1 we
then construct the complementary series [x1] × [x2] o πx3 = Π(x1,x2,x3),
0 ≤ x1 < x2 − 1. Thus, the region (8.1d) is unitary.
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�

Eventually, we show that the converse to Proposition 8.3 holds.
We first consider the singular affine hyperplanes.

8.3. Two-parameter complementary series – slanted hyperplanes case

We start with the hyperplane

Hsla = {x ∈ R3 : x2 − x1 = 1}.
All hyperplanes in the W -orbit of Hsla will be called slanted hyperplanes. We
parameterize Hsla by the coordinates x = x1 + 1

2 , y = x3. Thus, let ι : R2 → Hsla

be the affine isomorphism

ι(x, y) = (x− 1
2 , x+ 1

2 , y).

For any (x, y) ∈ R2, we decompose Πι(x,y) in the Grothendieck group as Φ+
(x,y) +

Φ−(x,y) where

Φ+
(x,y) = νxδ([− 1

2 ,
1
2 ])× [y] o σ, Φ−(x,y) = νxL([− 1

2 ], [ 1
2 ])× [y] o σ.

Let H◦◦sla be the complement in Hsla of all singular affine hyperplanes other than
x2−x1 = ±1, in other words, the image under ι of the complement R2

v-reg-sla of the
lines

y + x = ± 3
2 , x+ y = ± 1

2 , x = ± 1
2 , y − x = ± 3

2 , y − x = ± 1
2 ,

y = ±α, x = ±(α− 1
2 ), x = ±(α+ 1

2 ).

More importantly, let H◦sla ⊃ H◦◦sla be the complement in Hsla of the affine hyper-
planes

x3 + x2 = ±1, x1 − x3 = ±1, x3 = ±α, x2 = ±α, x1 = ±α.
Thus, H◦sla is the image under ι of the complement R2

reg-sla of the lines

y + x = ± 3
2 , y − x = ± 3

2 , y = ±α, x = ±(α− 1
2 ), x = ±(α+ 1

2 ).

The representations Φ±(x,y) are irreducible precisely when (x, y) ∈ R2
reg-sla. Thus,

for (x, y) ∈ R2
reg-sla, ι(x, y) is strongly unitary (resp., strongly non-unitary) if and

only if both Φ±(x,y) are unitarizable (resp., non-unitarizable).

Denote
Wsla = {w ∈W : w(Hsla) = Hsla}.

Then, Wsla
∼= {±1}×{±1}, and it is generated by the following two transformations

(x1, x2, x3) 7→ (−x2,−x1, x3) (x1, x2, x3) 7→ (x1, x2,−x3).

It acts on Hsla
∼= R2 (preserving R2

reg-sla and R2
v-reg-sla) by (x, y) 7→ (ε1x, ε2y),

ε1, ε2 = ±1.
For (x, y) ∈ R2

reg-sla, the representations Φ±x,y depend only on the Wsla-orbit of

(x, y). We denote R2
+ = {(x, y) ∈ R2 : x, y ≥ 0}. Set R2

reg-sla,+ = R2
+ ∩ R2

reg-sla.

Provisionally, we say that a point (x, y) ∈ R2
reg-sla is unitary+ (resp., unitary−) if

Φ+
(x,y) (resp., Φ−(x,y)) is unitarizable. (Eventually, these two notions are equivalent.)

We also say that (x, y) ∈ R2
reg-sla is unitary± if it is both unitary+ and unitary−, i.e.,

if ι(x, y) is strongly unitary. These properties depend only on the Wsla-orbit and
the connected component of (x, y) in R2

reg-sla. We say that a connected component
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of R2
reg-sla is unitary+ (resp., unitary−, unitary±) if the same is true for any (or

each) point in it. As before it is enough to consider the connected components of
R2

reg-sla,+.

Analogously, one defines unitary± components of R2
v-reg-sla. For simplicity, we

denote in the rest of this chapter the components (8.1a)–(8.1d) of Proposition 8.3
by Ca, Cb, Cc and Cd respectively. We start the study of unitary± components of
R2

v-reg-sla with the following technical

Lemma 8.4. (See Figure 1) For α ≥ 1 the following connected components of
R2

v-reg-sla,+ are unitary±.

x+ y < 1
2 ,(C ′1)

x+ y < 3
2 , x− y >

1
2 , x < α− 1

2 , (α > 1)(C ′2)

1
2 < x+ y < 3

2 , y − x <
1
2 , x <

1
2 ,(C ′3)

1
2 < x+ y < 3

2 , x− y <
1
2 ,

1
2 < x < α− 1

2 , (α > 1)(C ′4)

x+ y < 3
2 , y − x >

1
2 , y < α,(C ′5)

y − x > 3
2 , y < α, x < 1

2 , (α ≥ 2)(C ′6)

y − x > 3
2 , y < α, x > 1

2 , (α > 2)(C ′7)

x− y > 3
2 , x < α− 1

2 (α > 2).(C ′8)

(The constraint x < α − 1
2 in C ′2 and C ′4 is redundant if α ≥ 2. Similarly the

constraint y < α in C ′5 is redundant for α > 1.) Moreover, there exist w1, . . . , w8 ∈
W and X1, . . . , X8 ∈ {Ca, Cb, Cc, Cd} such that

(1) ι(C ′i) is contained in ∂(wi(Xi)) for i = 1, . . . , 8.
(2) w1(X1) ∪ w4(X4) ∪ w5(X5) ∪ w6(X6) is contained in the connected com-

ponent (i.e. half space) of R3\Hsla containing the origin.
(3) w2(X2) ∪ w3(X3) ∪ w7(X7) ∪ w8(X8) is contained in the connected com-

ponent of R3\Hsla that does not contain the origin.

Finally, for α < 1 there are no unitary± components in R2
v-reg-sla,+.

Note however that for α = 1
2 the boundary of the connected component in R3

that contains (8.2), intersects Hsla only at the point ( 1
2 ,

1
2 , 0).

Proof. Denote

w1 : (x1, x2, x3) 7→ (−x2, x3, x1),

w2 : (x1, x2, x3) 7→ (x2, x3, x1),

w3 : (x1, x2, x3) 7→ (−x1, x3, x2),

w4 : (x1, x2, x3) 7→ (x1, x3, x2),

w5 : (x1, x2, x3) 7→ (−x1, x2, x3),

w6 : (x1, x2, x3) 7→ (−x1, x2, x3),

w8 : (x1, x2, x3) 7→ (x1, x2, x3),

w8 : (x1, x2, x3) 7→ (x2, x3, x1).

Take X1, . . . , X8 to be Ca, Cb, Cc, Cc, Cc, Cb, Cd, Cd respectively.
The component X1 = Ca is determined by the conditions x2 + x3 < 1, 0 ≤

x1 ≤ x2 ≤ x3, and w1 takes it to (x′1, x
′
2, x
′
3) = (−x2, x3, x1), where x′2 − x′1 < 1,
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y = 0

x = 0

y = α

y + x = 3
2

( 3
2 , 0)( 1

2 , 0)
(α− 1

2 , 0) (α+ 1
2 , 0)

(0, α)

( 1
2 , 0)

(0, 3
2 )

(α− 1
2 , α− 2)

(α+ 1
2 , α− 1)

(α− 3
2 , α)

(α− 1
2 , α) (α+ 1

2 , α) (α+ 3
2 , α)

C ′1 C ′2

C ′3 C ′4

C ′5

C ′6

C ′7

C ′8

Figure 1. Unitarizability for Φ±(x,y) (case α = 3; added lines)

0 ≤ x′3 ≤ −x′1 ≤ x′2. We get at the boundary for x′2 = x′1 + 1 the region 0 ≤ x′3 ≤
−x′1 ≤ x′2. Introduce x′1 = x − 1

2 , y = x′3. From x′3 ≤ −x′1 we get x − y ≤ 1
2 .

The interior of this region is C ′1. The above inequality x′2 − x′1 < 1 is equivalent
to the inequality x2 + x3 < 1. Therefore, w1(X1) is in the connected component of
R3\Hsla containing the origin.

The remaining 7 cases are proved in analogous (elementary) way. We omit the
details. �

Proposition 8.5. For α ≥ 1, the unitary± connected components of R2
reg-sla,+

are given by

x+ y < 3
2 , x < α− 1

2 , y < α(8.3a)

y − x > 3
2 , y < α, (α ≥ 2)(8.3b)

x− y > 3
2 , x ≤ α−

1
2 , (α > 2).(8.3c)

(The constraint x < α − 1
2 (resp., y < α) in the first region is redundant if α ≥

2 (resp., α > 1).) For each point (x, y) in the above three regions there exists
w ∈ W such that ι(x, y) is contained in the boundary of w(C) where C is one
of the unitary connected components (8.1a)–(8.1d) of Proposition 8.3. The other
connected components of R2

reg-sla,+ are neither unitary+ nor unitary−.

If α = 0 or 1
2 then there are no unitary+ or unitary− regions in R2

reg-sla.

Proof. Assume that α ≥ 1. Lemma 8.4 implies that components (8.3a)–(8.3c)
(which are the regions C0, C

u
2 and Cd2 in Figure 2) are unitary.1

1Note that (8.3a) is a two-dimensional complementary series, while (8.3b) and (8.3c) can
be obtained by iterating one-dimensional complementary series twice. This is a simpler way to

conclude this unitarity.
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(α+ 1
2 , α+ 2)
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(α− 1
2 , α+ 1)
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Figure 2. Unitarizability for Φ±(x,y) (case α = 3)

We turn to the converse direction. Let us call the regions (8.3a)–(8.3c) special.
Clearly, these regions are distinct connected components of R2

reg-sla,+.

We present graphical interpretation of R2
reg-sla,+ for α ≥ 2, α = 3

2 , α = 1, α = 1
2

and α = 0 in Figures 2, 3, 4, 5 and 6 respectively, where the special regions are
shaded. We need to show that the non-shaded regions are neither unitary+ nor
unitary−.

Using the results of chapters 4, 5 and 6 (and having in mind Remark 7.1), we
have put in Figures 2 – 6 black vertices where all subquotients are unitarizable, and
white or gray where we have at least one irreducible subquotient non-unitarizable
(see 7.4.1 for more precise description). Suppose that we have a unitary+ or
unitary− component. Then, it must be bounded, and cannot have a non-black
vertex. Now Figures 2, 5 and 6 imply that any unitary+ or unitary− component
there must be special.

In the case of α = 3
2 , only C3 does not have a non-black vertex. Since the

slanted side of this component contains either νx−
1
2 δ([−1, 1]) o σ, 1 < x < 3

2 , or

νx−
1
2 δ([−1, 1])t o σ, 1 < x < 3

2 , and both families consists of non-unitarizable
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Figure 3. Unitarizability for Φ±(x,y) (case α = 3
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2
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Figure 4. Unitarizability for Φ±(x,y) (case α = 1)
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Figure 5. Unitarizability for Φ±(x,y) (case α = 1
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Figure 6. Unitarizability for Φ±(x,y) (case α = 0)

representations by Proposition 8.1 (use N◦1 in Table 1), we get that also C3 is
neither unitary+ nor unitary−.

It remains to consider the case of α = 1. Here only C4 does not have a non-black
vertex. Here the slanted side of this component contains either ν

1
2−xδ([−1, 1])o σ,

0 < x < 1
2 , or ν

1
2−xδ([−1, 1]) o σ, 0 < x < 1

2 , and both families consists of
non-unitarizable representations by Proposition 8.1 (use again N◦1 in Table 1).
Therefore, C4 can be neither unitary+ nor unitary−. This completes the proof of
the proposition. �

Corollary 8.6. The components C ′1, . . . , C
′
8 are precisely the unitary± com-

ponents in R2
v-reg-sla.
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Proof. Observe that the components (8.3a)–(8.3c) are contained in the closure
of the union of C ′1, . . . , C

′
8. Now the claim follows from Proposition 8.5. �

8.4. Two-parameter complementary series – level hyperplanes case

We turn to the affine hyperplane

Hlev = {x ∈ R3 : x3 = α}.

All hyperplanes in the W -orbit of Hlev will be called level hyperplanes. For any
(x, y) ∈ R2, we decompose Π(x,y,α) in the Grothendieck group as Ψ+

(x,y) + Ψ−(x,y)

where

Ψ+
(x,y) = [x]× [y] o δ([α];σ), Ψ−(x,y) = [x]× [y] o L([α];σ)

if α > 0 and Ψ±(x,y) = [x]× [y] o δ([0]±;σ) if α = 0.

Let H◦◦lev (resp., R2
v-reg-lev) be the complement in Hlev (resp., R2) of the singular

affine hyperplanes other than x3 = ±α:

x1 ± x2 = ε, xi = ±(α+ ε), xi = ±α, ε = ±1, i = 1, 2.

Let H◦lev ⊃ H◦◦lev (resp., R2
reg-lev ⊃ R2

v-reg-lev) be the complement in Hlev (resp., R2)

of the 12 (not necessarily distinct) affine hyperplanes

x1 ± x2 = ε, xi = ±(α+ ε), ε = ±1, i = 1, 2.

The representations Ψ±(x,y) are irreducible precisely when (x, y) ∈ R2
reg-lev. Thus,

for (x, y) ∈ R2
reg-lev, (x, y, α) is strongly unitary (resp., strongly non-unitary) if and

only if both Ψ±(x,y) are unitarizable (resp., non-unitarizable). The group Wlev of

signed permutations on {1, 2} (i.e., the dihedral group D4) acts on R2 and preserves
R2

reg-lev and R2
v-reg-lev. For (x, y) ∈ R2

reg-lev, the representations Ψ±x,y depend only

on the Wlev-orbit of (x, y). We have denoted R2
++ = {(x, y) ∈ R2 : y ≥ x ≥ 0}. Set

R2
reg-lev,++ = R2

++ ∩ R2
reg-lev (resp. H◦lev,++) and R2

v-reg-lev,++ = R2
++ ∩ R2

v-reg-lev

(resp. H◦◦lev,++).

We say that a point (x, y) ∈ R2
reg-lev is unitary+ (resp., unitary−) if Ψ+

(x,y)

(resp., Ψ−(x,y)) is unitarizable. (As before, eventually these notions will turn out to

be equivalent.) We also say that (x, y) ∈ R2
reg-lev is unitary± if it is both unitary+

and unitary−, i.e., if (x, y, α) is strongly unitary. These properties depend only on
the Wlev-orbit and the connected component of (x, y) in R2

reg-lev. We say that a

connected component of R2
reg-lev is unitary+ (resp., unitary−, unitary±) if the same

is true for any (or each) point in it. As before it is enough to consider the connected
components of R2

reg-lev,++.

Proposition 8.7. The unitary± connected components of R2
reg-lev,++ are as

follows.

(α > 2) y − x > 1, y < α− 1,(8.4a)

(α > 1) x+ y < 1, y < α− 1,(8.4b)

(α = 1) x+ y < 1,(8.4c)

(α = 1
2 ) y < 1

2 ,(8.4d)

(α = 0) x+ y < 1.(8.4e)
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y = 0

x = 0 sym. y = xx = α− 1 x = α+ 1

y = α− 1

y = α+ 1

y = x+ 1

y = x− 1

y + x = 1

(α+ 1, α+ 2)

(α+ 1, α+ 1)

(α− 1, α− 1)

(α− 1, α)

(α, α+ 1)(α− 1, α+ 1)

C0

C7

Figure 7. Unitarizability for Ψ±(x,y) (case α = 3)

(The constraint y < α − 1 in (8.4b) is redundant for α ≥ 2.) The other connected
components of R2

reg-lev,++ are neither unitary+ nor unitary−.

Proof. The regions (8.4b), (8.4d), (8.4e) are the connected components of the
origin (i.e. C0) in R2

reg-lev,++ in the cases α > 1, α = 1
2 and α = 0 respectively.

Therefore, they are unitary± since δ([α];σ) and L([α];σ) (for α > 0) and δ([0]±;σ)
(for α = 0) are unitarizable; see Figures 7, 8, 9, 11, and 12).

In the case α = 1 the origin is not a regular point in R2. However, [ 1
4 ]×[ 1

4 ]oπ ∼=
([− 1

4 ]×[ 1
4 ])oπ is in (8.4c) (i.e. in C10 of Figure 10) for π = L([1];σ) or π = δ([1];σ).

Therefore, this region is also unitary±.
Suppose that α > 2. Consider Figure 7. The region (8.4a) (i.e. C7 in Figure

7) is clearly a connected component of R2
reg-lev,++ (not containing the origin). For

any (x, y) ∈ R2
reg-lev,++ satisfying (8.4a) (where α > 2), the point (x, y, α) lies in

the boundary of (8.1d). Hence, it is unitary± by Proposition 8.3.
For the converse, as before, call the regions (8.4b)–(8.4e) above (with the re-

spective conditions on α) special. We proceed now in the same way as in the proof
of exhaustion in Proposition 8.5 (therefore, we shall not repeat all details from
there). We need to prove that any non-shaded component is neither unitary+ nor
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y = 0

x = 0 x = 1 x = 3

y = 1

y = 3

y = x+ 1

y = x− 1

y + x = 1

(1, 1)

(3, 3)

(1, 2)

(1, 3)

(2, 3)

(3, 4)

C0

Figure 8. Unitarizability for Ψ±(x,y) (case α = 2)

y = 0

x = 0 x = 1
2 x = 5

2

y = 1
2

y = 5
2

y = x+ 1

y = x− 1

y + x = 1

( 1
2 ,

1
2 )

( 1
2 ,

3
2 )

( 5
2 ,

5
2 )

( 3
2 ,

5
2 )( 1

2 ,
5
2 )

C0

C9

Figure 9. Unitarizability for Ψ±(x,y) (case α = 3
2 )
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y = 0

x = 0

y = x− 1

y = 2

y = x+ 1x = 2

(2, 3)

(0, 0) (1, 0) (2, 0)

(1, 2) (2, 2)

x+ y = 1C10

Figure 10. Unitarizability for Ψ±(x,y) (case α = 1)

y = 0

x = 0

y = x− 1

x+ y = 1

y = 1
2

y = 3
2

x = 3
2x = 1

2 y = x+ 1

( 1
2 ,

1
2 )

( 3
2 ,

3
2 )( 1

2 ,
3
2 )

( 5
2 ,

3
2 )

C0

C11

Figure 11. Unitarizability for Ψ±(x,y) (case α = 1
2 )

unitary−. Here, only the components C9 in Figure 9 and C11 in Figure 11 do not
have a non-black vertex (therefore all other non-shaded components in Figures 7
– 12 are non-unitary). We now show that also these two components are neither
unitary+ nor unitary−, which will complete the proof of the proposition.
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y = 0

y = 1

x = 0 x = 1

y = x− 1

y = x+ 1

(1, 1)

(1, 0)

(1, 2)

C0

Figure 12. Unitarizability for Ψ±(x,y) (case α = 0)

Let α = 3
2 . The slanted side of C9 contains the family ν

1
2−xδ([− 1

2 ,
1
2 ]) o π,

0 < x < 1
2 , for either π = δ([ 3

2 ];σ) or π = L([ 3
2 ];σ). By Proposition 8.1 (use

N◦2 and 3 in Table 1) both families consists of non-unitarizable representations.
Therefore, C9 is neither unitary+ nor unitary−.

Assume now α = 1
2 . Here the slanted side of this component contains either

the family ν
1
2−xδ([− 1

2 ,
1
2 ])oL([ 1

2 ];σ), 0 < x < 1
2 , or the family ν

1
2−xL([− 1

2 ], [ 1
2 ])o

δ([ 1
2 ];σ), 0 < x < 1

2 . Both families consists of non-unitarizable representations by
Proposition 8.1 (use N◦3 in Table 1), which implies that C11 is neither unitary+

nor unitary−. �

Corollary 8.8. The unitary± connected components of R2
v-reg-lev,++ are as

follows.

(1) α > 1 :

x+ y < 1, y < α− 1,

y − x > 1, y < α− 1,

where the constraint y < α − 1 in the first region is redundant for α ≥ 2
and the second region is empty if α ≤ 2.

(2) α = 1 :

x+ y < 1

(3) α = 1
2 :

y < 1
2

(4) α = 0 :

x+ y < 1, x > 0.

The other connected components of R2
v-reg-lev,++ are neither unitary+ nor unitary−.

�

8.5. Three-parameter complementary series

In the proof of Proposition 8.12 below we use the following two simple lemmas.
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Lemma 8.9. (1) Let α > 1. Suppose that C is a bounded connected
component of R3

reg whose boundary contains a segment AB, where A =
(a1, a2, a3) and B = (b1, b2, b3) are two distinct points such that there exist
an index k and ε ∈ {±1} for which ak = bk = εα. Then, there exists a

two-dimensional face of the closure C of C that is contained in a level
hyperplane.

(2) Suppose that a connected component C of R3
reg,++ contains in its boundary

at least one of the sets ι(C ′6), ι(C ′7) or ι(C ′8) (see Lemma 8.4). Then, C
admits a two-dimensional face that is contained in a level hyperplane.

Proof. Suppose that C is a component as in (1). Clearly, AB is contained in

either an edge or the relative interior of a two-dimensional face of C . In the second
case, there is nothing to prove. Therefore, suppose that AB is contained in an edge
of C . Clearly, it is enough to prove the lemma for ε = 1.

Suppose on the contrary that no two-dimensional face of C is contained in a
level hyperplane. Then, the edge containing AB must be contained in the inter-
section of two different (non-parallel) slanted hyperplanes given by the following
equations

ε1xi + ε2xj = 1, ε3xr + ε4xs = 1, εl ∈ {±1}, i, j, r, s ∈ {1, 2, 3}, i 6= j, r 6= s.

Suppose {i, j} = {r, s}. Then, (εi, εj) 6= ±(εr, εs). Therefore, we are left with the
hyperplanes ε1xi + ε1xj = 1 and ε1xi − ε1xj = 1. If k 6∈ {i, j} then A = B, which
is a contradiction. Therefore, k ∈ {i, j}. If k = i, then ε1α = 1, which cannot be.
If k = j, then ε1α = 0, which again is not possible.

Therefore, {i, j} 6= {r, s}. Denote {i, j} ∩ {r, s} = {t}. Now hyperplanes are
determined by equations

ε1xi + ε2xt = 1, ε3xt + ε4xs = 1, εl ∈ {±1}, {i, t, s} = {1, 2, 3}.
Suppose that k = i or k = s. Then, at = bt, and further as = bs, which is a
contradiction. Similarly, if k = t, then again A = B, which is a contradiction. This
completes the proof (1). Further, (2) follows directly from (1). �

Remark 8.10. By the same reasoning, the closure of the connected compo-
nents (8.1b) and (8.1d) admit two-dimensional faces which are contained in level
hyperplanes. The same is true for (8.1c) if α > 1.

Lemma 8.11. Suppose that C is a connected component of R3
reg which has

in its boundary ι(C ′2) (with α > 1) or ι(C ′3). Assume further that C lies in the
connected component of R3\Hsla that contains the origin. Then, C is not a unitary
component.

Proof. We use below the transforms w2 : (x1, x2, x3) 7→ (x2, x3, x1) and w3 :
(x1, x2, x3) 7→ (−x1, x3, x2) that were introduced in the proof of Lemma 8.4.

Suppose first that ι(C ′2) lies in the boundary of C (and α > 1). Denote by Y2

the non-empty convex open subset of R3
++ defined by the following inequalities:

x1 + x2 < 1, x3 − x2 < 1, x3 − x1 > 1, x3 < α.2

It is straightforward to verify that Y2 ⊂ R3
reg. However, Y2 is not a unitary com-

ponent since for instance (0, 1, 5
4 ) = ι( 1

2 ,
5
4 ) ∈ ∂(Y2)∩Hsla and ( 1

2 ,
5
4 ) ∈ R2

reg-sla,+ is

2The last condition is automatically satisfied if α ≥ 2.
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not a unitary point by Proposition 8.5 (see also Figures 2 and 3). Hence w2(Y2) is
not unitary as well. However, it is immediate to see that the boundary of w2(Y2)
contains C ′2. Since w2(Y2) and C are on the same side of Hsla we conclude that
w2(Y2) ⊂ C . Hence C is not unitary.

Similarly, suppose that ι(C ′3) lies in the boundary of C . Denote by Y3 the
nonempty open convex subset of R3

++ consisting of the points (x1, x2, x3) that
satisfy

x1 + x3 < 1, x3 − x2 < 1, 1 < x2 + x3, x3 < α.

One checks that Y3 ⊂ R3
reg. Moreover, Y3 is not unitary since it contains for

instance the point ( 1
5 ,

3
5 ,

3
5 ) and if this point were unitary then by unitary parabolic

reduction we would get that the representation [ 3
5 ]× [− 3

5 ] is unitarizable, which is

a contradiction (since 1
2 <

3
5 ).

Once again, we check that w3(Y2) contains ι(C ′3) in its boundary, and hence
w3(Y2) ⊂ C since w3(Y2) and C lie on the same side of Hsla. Hence C is not unitary
as required. �

Proposition 8.12. The list of unitary connected components of R3
reg,++ in

Proposition 8.3 is exhaustive. In particular, if α = 0 there are no unitary connected
components.

Proof. Let C be a unitary connected component of R3
reg,++. Denote by C the

(unitary) connected component of R3
reg containing C. Recall that C (and also C )

must be bounded, and the boundary of C is contained in the union of all reducibility
hyperplanes. Since all slanted (resp. level) hyperplanes are in the same W -orbit,
any two-dimensional face of the boundary of C is contained in a W -translate of
either Hsla or Hlev.

Consider first the case α = 0. Clearly, C cannot be bounded only by level
hyperplanes (otherwise, C would not be bounded). Therefore, there exists a two-
dimensional face of the boundary of C that lies in a slanted hyperplane. This
would contradict Proposition 8.5 (see Figure 6). Therefore, we do not have unitary
connected components in this case.

For the rest of the proof, we consider the case α > 0. We first note that

C ⊆ {x ∈ R3
reg : |xi| < α, i = 1, 2, 3}

and
C ⊆ {x ∈ R3

reg,++ : x3 < α}.
This follows immediately from Propositions 8.5 and 8.7 by passing to the boundary.3

In particular, in the case α = 1
2 we conclude that C is the component (8.2).

For the rest of the proof we consider the case α ≥ 1.
Suppose that a two-dimensional face of the boundary of C lies in a level hy-

perplane. Since C ⊃ C we may assume that this level hyperplane is Hlev itself.
We therefore need to consider unitary± connected components of H◦◦lev,++ (which

correspond to R2
v-reg-lev,++).

Consider first the case α > 1. We have two possibilities for unitary± connected
components. The first possibility is x + y < 1, y < α − 1, which clearly lies in
the closure of the component (8.1b). Moreover, (8.1b) is the only component that
contains (8.4a) in its closure and that is contained in {x : x3 < α}. We conclude

3Observe that in (x, y)-planes, x < α− 1
2

in the unitary two-dimensional slanted components.
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that C must be the component (8.1b). The second possibility is y−x > 1, y < α−1
(when α > 2). Again, (8.1d) is the only component that contains (8.4b) in its
closure and is contained in {x : x3 < α}. Thus, C must be the component (8.1d).

Consider now the case α = 1. Then, we have only one possibility for unitary±

connected component: x+ y < 1. This is in the closure of (8.1c). In the same way
as before, we conclude that C must be the component (8.1c).

It remains to consider the case where all the two-dimensional faces of the bound-
ary of C are contained in slanted hyperplanes. Take a slanted hyperplane H such
that C has a two-dimensional face in it. Since C is bounded, we can find H such
that C is in the same half-space of R3 \H as the origin. Let w ∈ W be such that
w(H) = Hsla. Then, w(C) has a two-dimensional face in w(H) = Hsla, and w(C)
is in the same half-space of R3 \Hsla as the origin. Furthermore, acting by Wsla (if
necessary), we conclude that the following holds:

(Int) There exists unique w ∈ W such that w(∂C) ∩Hsla,+ is the closure of a
unitary connected component C ′ of H◦◦sla,+ and

(8.5) (wx)2 − (wx)1 < 1

for all x ∈ C.

Consider wx ∈ C ′ where x ∈ ∂C. Then,

(8.6) w(x) = ι(x, y) = (x− 1
2 , x+ 1

2 , y)

for some (x, y) ∈ R2
v-reg-sla,+. Now C ′ is one out of the 8 unitary components

C ′1, C
′
2, . . . , C

′
8 of R2

v-reg-sla,+. Since by our assumption C does not have two-

dimensional faces contained in level hyperplanes, Lemma 8.9 implies that C ′ must
be one of the 5 unitary components C ′1, . . . , C

′
5. We examine these 5 cases below.

Denote the components (8.1a), (8.1b), (8.1d), (8.1d), by Ca, Cb, Cc, Cd re-
spectively in the sequel, as we did in §8.3. Further, we use below the elements
w1, . . . , w5 ∈W defined in the proof of Lemma 8.4.

Suppose C ′ = C ′i for some index i ∈ {1, 4, 5}. Then, w(C) = wi(Xi), where
Xi ∈ {Ca, Cb, Cc, Cd} by Lemma 8.4. Therefore, the proposition holds in this case.

Consider the remaining case when C ′ = C ′i for some i ∈ {2, 3}. Then, Lemma
8.11 implies that C is not unitary, which is a contradiction. This completes the
proof of the proposition. �

8.6. Conclusion

Theorem 8.13. The irreducible unitarizable subquotients of Πx when x =
(x1, x2, x3) ∈ R3

++, are the following.

(1) (α ≥ 1) All irreducible subquotients when x lies in the closure of one of
the domains (8.1a)–(8.1d).

(2) (α = 1
2 ) All irreducible subquotients when x3 ≤ 1

2 .
(3) (α = 0) All irreducible subquotients when x1 = 0, x2 + x3 ≤ 1.
(4) (α > 0) The representations δ([α, α+ 2];σ) and L([α], [α+ 1], [α+ 2];σ).
(5) (α = 0) The representations δ([0, 2]±;σ) and L([1], [2]; δ([0]±;σ)).
(6) (α > 0) The complementary series [x]oδ([α, α+1];σ) and [x]oL([α], [α+

1];σ) for 0 ≤ x < |α− 1| (if α 6= 1) and its irreducible subquotients for
x = α− 1.

(7) (α = 0) The complementary series (including subquotients at the ends)

[x] o δ([0, 1]±;σ), [x] o L([1]; δ([0]±;σ)), 0 ≤ x ≤ 1.
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(8) (α > 1) The representation L([α− 1], [α]; δ([α];σ)).
(9) (α = 1

2 ) The complementary series (including subquotients at the ends)

δ([x− 1
2 , x+ 1

2 ]) o δ([ 1
2 ];σ), L([x− 1

2 ], [x+ 1
2 ]) o L([ 1

2 ];σ), 0 ≤ x ≤ 1

[x] o δ([− 1
2 ,

1
2 ]−;σ), [x] o L([ 1

2 ]; δ([ 1
2 ];σ)), 0 ≤ x ≤ 3

2

δ([x− 1, x+ 1]) o σ, L([x− 1], [x], [x+ 1]) o σ, 0 ≤ x ≤ 1
2 .

Proof. The unitarity of the above representations follows from Proposition
8.3, (8.4e) in Proposition 8.7, Proposition 8.1 (N◦5, 6, 2, 13 and 1 in Table 1) and
the unitarity in the critical cases dealt with in the previous chapters (where we
noted that the irreducible square-integrable representations and its DL duals are
unitary, together with the representation in (8) of the theorem). It remains to prove
the exhaustion.

Suppose that Πx, x = (x1, x2, x3) ∈ R3
++ admits a unitarizable irreducible

subquotient. For x ∈ R3
reg by Proposition 8.12, α > 0 and x belongs to one of the

regions (8.1a)–(8.1d) if α ≥ 1 and x3 <
1
2 if α = 1

2 .
Before we proceed further, we observe below that all the irreducible subquo-

tients of the representations listed in Table 1 and corresponding to the parameter
x between 0 and the first reducibility point (including the end points), are listed in
the above theorem. First, such representations corresponding to N◦5 (resp. N◦6,
resp. N◦13) are contained in (6) (resp. (7), resp. (9)) of the theorem. Consider
now such representations in the case of N◦1. For α > 1, that representations are
contained in the set of representations corresponding to the closure of Cd (resp. Cb,
resp. Cc) if x > 1 (resp. 1

2 ≤ x ≤ 1, resp. 0 ≤ x ≤ 1
2 ). For α = 1 such repre-

sentations are contained in the set of representations corresponding to the closure
of Ca. Therefore, they are all contained in (1) of the theorem. For α = 1

2 (resp.
α = 0), such representations are contained in (9) (resp. (3)) of the theorem. In
the case of N◦2, such representations are contained in the set of representations
corresponding to the closure of Cb (resp. Cc) if α > 1 (resp. α = 1). For α = 1

2 ,
they are contained in (9) of the theorem. For N◦3, they are contained in the set
of representations corresponding to the closure of Cb (resp. (2) of the theorem) if
α ≥ 1 (resp. α = 1

2 ). The representations of N◦4 and N◦7 are contained in (3)
of the theorem. In the case of N◦8 and N◦9, such representations are contained in
the set of representations corresponding to the closure of Cd (resp. Cb) if α > 2
(resp. 1 < α ≤ 2). For N◦10 and N◦11, they are contained in the set of representa-
tions corresponding to the closure of Cc, for N◦12, they are contained in (2) of the
theorem and for N◦14, they are contained in (3) of the theorem.

Suppose that the W -orbit of x intersects H◦sla. Then, by Proposition 8.5 and
Lemma 8.4, α ≥ 1 and x belongs to the closure of one of the regions (8.1a)–(8.1d).
Similarly, if the W -orbit of x intersects H◦lev then by Proposition 8.7, either:

(1) (α > 1) x belongs to the closure of (8.1b) or (8.1d),
(2) (α = 1) x belongs to the closure of (8.1c),
(3) (α = 1

2 ) x belongs to the closure of (8.2),
(4) (α = 0) x1 = 0 and x2 + x3 < 1.

Suppose now that x is not regular but the W -orbit of x intersects neither H◦sla nor
H◦lev. Let π ∈ JH(Πx). Consider first the case when x is not critical. Then, there
exists x ≥ 0 such that one of the following options holds.
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(1) π = τ o σ where τ ∈ JH([x− 1]× [x]× [x+ 1]) =

{δ([x− 1, x+ 1]), L([x− 1], [x], [x+ 1]), L([x− 1, x], [x+ 1]), L([x− 1], [x, x+ 1])}.

(2) π ≤ τ ′ o π′ where

τ ′ ∈ JH([x− 1
2 ]× [x+ 1

2 ]) = {δ([x− 1
2 , x+ 1

2 ]), L([x− 1
2 ], [x+ 1

2 ])}

and π′ ∈ JH([α] o σ) =

{
{δ([α];σ), L([α];σ)} α > 0

{δ([0]±;σ)} α = 0
.

(3) π = [x] o π′ where π′ ∈ JH([α]× [α+ 1] o σ).
(4) (α 6= 0) π = [x] o π′ where π′ ∈ JH([α− 1]× [α] o σ).

The unitarity in the cases (1) when τ is unitarizable, (2) and (3) above, as well
as in the case (4) if π′ is unitarizable, was dealt with in Proposition 8.1 (Table
1), and there is determined when one has complementary series. We have seen
above that these complementary series all appear in the irreducible unitarizable
representations listed in the above theorem. It remains to consider only the case
of non-unitarizable τ and π′ as above. The unitarity in these cases was dealt with
in Lemma 8.2. Of these two cases, unitarizable representations show up only for τ
when α > 1 and 0 ≤ x ≤ α− 1. Obviously, all these representations show up in the
group (1) in the theorem (corresponding to Cd).

It remains to consider the critical points (the unitarity corresponding to these
points was dealt with in the chapters 4, 5 and 6). Unitarizability of the irreducible
subquotients there, excluding the representations listed in (4), (5) and (7), was
proved applying the unitary parabolic induction from a maximal parabolic sub-
group, or proving that they show up in the ends of complementary series starting
from maximal parabolic subgroups (listed in Proposition 8.1). For both methods of
the proof, our above checking that all the irreducible subquotients of the represen-
tations listed in Table 1 and corresponding to the parameter x between 0 and the
first reducibility point (including the end points) are listed in the above theorem,
implies that all the irreducible subquotients for which we have proved in chapters
4, 5 and 6 that they are unitarizable, are listed in the above theorem. For the re-
maining irreducible subquotients considered in chapters 4, 5 and 6, we proved there
that they are not unitarizable. Therefore, any irreducible unitarizable subquotient
in the case of critical points is listed in the above theorem. This finishes the proof
of the theorem. �

Remark 8.14. Let τ := ρ⊗ ρ⊗ ρ⊗ σ be a representation of a Levi subgroup
M of a classical group G. Then, the representations listed in (4), (5) and (8) of the

above theorem are isolated in Ĝ, and the other listed in the theorem are not. They
are in the part ĜΩ of Ĝ corresponding to the Bernstein component Ω that contains
the conjugacy class of (M, τ) (see [8] and [56] for details). The cardinality of these
representations is 4, 2 and 3 if α = 0, α ∈ { 1

2 , 1} and α > 1 respectively, but we

have always more isolated representations in ĜΩ.
There exists an unramified character χ of a general linear group such that ρ′ :=

χρ is F ′/F -selfdual and χρ 6∼= ρ. The isolated representations in ĜΩ are precisely
the isolated representations corresponding ρ, σ and ρ′, σ in the above theorem.
Therefore, the number of isolated representations in ĜΩ is between 4 and 8 (ĜΩ is

an open subset of Ĝ). Actually, section 8 of [67] implies that all numbers between
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4 and 8 can show up as these cardinalities4. As an example, observe that the
component of irreducible unitarizable representations with non-trivial Iwahori-fixed
vector of Sp(6, F ) (resp. SO(7, F )) has 6 (resp. 4) isolated representations.

If we have a component ĜΩ where Ω is not of the type that we just considered
(in corank 3), then it does not have isolated representations.

8.7. Conjectures

We end this chapter by stating two conjectures, motivated by the results of
[30], [42] and this paper (see also [70]).

Conjecture 8.15. Suppose that π is an isolated representation in the unitary
dual of a split classical group G. Then, π is automorphic5.

By [65], assuming Arthur + ε conjecture from [14], there are many irreducible
representations that are isolated in the automorphic dual. All these spherical rep-
resentations are subquotients in critical points.

The papers [30], [42], [65] and the present paper give some evidence for the
following

Conjecture 8.16. Suppose that π is an isolated representation in the unitary
dual of a split classical group G. Then, π is a subquotient of a representation of
critical type.

We can slightly extend the notion of critical point.

Definition 8.17. Let ρ1, . . . , ρk ∈ C and σ ∈ Ccl. Assume that for all i,
ρui
∼= (ρui )̌ and the set

{e(ρj) : ρuj
∼= ρui }

is a Z-segment in 1
2Z (possibly with multiplicities) that contains the reducibility

point αρui ,σ. Then, we say that the representation ρ1 × · · · × ρk o σ is of critical
type.

We would expect that any irreducible unitarizable subquotient of a represen-
tation of critical type of a split classical group is automorphic. Very preliminary
results in this direction are the subject matter of a work in progress.

4Having in mind [65] (where the number of isolated unitarizable spherical representations
for split classical groups is calculated), it is natural to expect that the number of isolated repre-

sentations in a component determined by ρ⊗ · · · ⊗ ρ︸ ︷︷ ︸
n−times

⊗σ grows rapidly as n→∞.

5See [14] (and also [65])



CHAPTER 9

Unitarizability in Mixed Case for Corank ≤ 3

In this chapter we shall use notation and terms introduced in sections 8 and 9 of
[70] regarding Jantzen decomposition of an irreducible representation of a classical
p-adic group We shall recall some of the most basic definitions. See section 8 of
[70] for more details.

9.1. Jantzen decomposition

9.1.1. Support of representation of classical group. Let X ⊆ C and
suppose that X is F ′/F -selfcontragredient, i.e. that

X̌ = X,

where X̌ = {ρ̌; ρ ∈ X}, and let σ ∈ Ccl. We say that γ ∈ Irrcl is supported in
X ∪ {σ} if there exist ρ1, . . . , ρk ∈ X (not necessarily distinct) such that

γ ≤ ρ1 × · · · × ρk o σ.

We denote by IrrclX∪{σ} the set of representations in Irrcl supported in X ∪{σ}. For
a not-necessarily irreducible representation π of a classical group, one says that it
is supported on X ∪ {σ} if each irreducible subquotient of it is supported on that
set.

9.1.2. Regular partition. Let

X = X1 ∪X2

be a partition of an F ′/F -selfcontragredient X ⊆ C. We shall say that this partition
is regular if X1 (and hence also X2) is F ′/F -selfcontragredient, and if among X1

and X2 there is no reducibility, i.e. if ρ1 × ρ2 is irreducible for all ρ1 ∈ X1 and
ρ2 ∈ X2.

9.1.3. Decomposition. Let π ∈ IrrclX∪{σ}, where X is F ′/F -selfcontragredi-

ent, and let X = X1 ∪X2 be a regular partition of X. Fix i ∈ {1, 2}. Then, there

exists β ∈ Irr supported in X3−i and γ ∈ IrrclXi∪{σ} such that

π ↪→ β o γ.

Moreover, γ is uniquely determined by the above requirement. It is denoted by

Xi(π)

and called the Jantzen component of π corresponding to the member Xi in the
regular partition X = X1∪X2. Furthermore, let X ⊂ C be such that C = X∪(C\X)

is a regular partition of C and let π ∈ Irrcl. Then, X(π) is defined as above for the
regular partition C = X ∪ (C \X) (and it is called again the Jantzen component of
π corresponding to X).
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For ρ ∈ Csd, denote Xρ = {νxρ : x ∈ R}. Let π ∈ Irrcl be weakly real. Then,
there exist finitely many distinct ρ1, . . . , ρk ∈ Csd and σ ∈ Ccl such that the support
of π is in Xρ1 ∪ · · · ∪Xρk ∪ {σ}. The representations

(Xρ1(π), . . . , Xρk(π))

determine π, and this defines a bijection

IrrclXρ1∪···∪Xρk∪{σ}
→

k∏
i=1

IrrclXρi∪{σ}
.

The inverse map is denoted by

ΨXρ1 ,...,Xρk
.

The correspondence π 7→ (Xρ1(π), . . . , Xρk(π)) has a number of very nice properties
(see [24] or section 8 of [70]). We shall now prove one additional very simple
property which we shall use often.

Lemma 9.1. Let X be an F ′/F -selfcontragredient subset of C, and let X =

X1∪X2 be a regular partition of X. Let θi ∈ Irr supported in Xi and πi ∈ IrrclXi∪{σ},
i = 1, 2. Suppose that θi o πi, i = 1, 2 are both irreducible. Then,

(9.1) ΨX1,X2(θ1 o π1, θ2 o π2) ∼= θ1 × θ2 o ΨX1,X2(π1, π2).

Proof. Note that θ1× θ2 oΨX1,X2
(π1, π2) is irreducible by (1) of Remark 8.9

of [70].
By the definition of ΨX1,X2(π1, π2), we know that ΨX1,X2(π1, π2) ↪→ τ o π1,

where τ is irreducible and supported on X2. This implies τ×θ1
∼= θ1×τ . Therefore,

θ1 × θ2 o ΨX1,X2
(π1, π2) ↪→ θ1 × θ2 o τ o π1

∼= θ2 × τ × θ1 o π1.

If θ2 × τ is not irreducible, we can easily show that it admits an irreducible
subquotient ϕ such that θ1 × θ2 o ΨX1,X2

(π1, π2) ↪→ ϕ × θ1 o π1. Therefore,
X1(θ1×θ2oΨX1,X2

(π1, π2)) ∼= θ1oπ1. Analogously X2(θ1×θ2oΨX1,X2
(π1, π2)) ∼=

θ2 o π2. This proves (9.1). �

9.2. Preservation of unitarizability by decomposition in corank ≤ 3

Lemma 9.2. Let π be a weakly real irreducible subquotient of θ1 × · · · × θk o σ,
where θi ∈ C and

k ≤ 3.

Suppose that all Xρi(π) in the Jantzen decomposition of π are unitarizable. Then,
π is unitarizable.

Proof. For k = 1, there is nothing to prove. We shall now prove the case
k = 3. (The case k = 2 is easier, and will be omitted.)

Let π 7→ (Xρ1(π), . . . , Xρ`(π)) be the Jantzen decomposition of π. For the
proof, we consider only those ρi for which Xρi(π) 6= σ. We assume this for the rest
of the proof. Denote

αi = αρi,σ.

If ` = 1, the claim obviously holds (since then π = Xρ1(π)).

Consider first the case ` = 3. Then, π is a subquotient of [x1](ρ1) × [x2](ρ2) ×
[x3](ρ3) oσ, where xi ≥ 0. Then, Xρi(π) are irreducible subquotients of [xi]

(ρi) oσ.
Since Xρi(π) are unitarizable, then we know xi ≤ αi, 1 ≤ i ≤ 3. But then each



9.2. PRESERVATION OF UNITARIZABILITY BY DECOMPOSITION IN CORANK ≤ 3 107

irreducible subquotient of [x1](ρ1) × [x2](ρ2) × [x3](ρ3) o σ is unitarizable (since we
are in complementary series or its ends). Therefore, π is unitarizable.

Suppose ` = 2. We may assume that π is a subquotient of [x1](ρ1) × [x2](ρ1) ×
[x3](ρ2) oσ. Then, Xρ2(π) is an irreducible unitarizable subquotient of [x3](ρ2) oσ.

This implies x3 ≤ α2. Furthermore, π is an irreducible subquotient of [x3](ρ2) o
Xρ1(π). Since Xρ1(π) is unitarizable and x3 ≤ α2, this implies that π is unitarizable
(again we are in complementary series or its ends). �

Lemma 9.3. Let π be a weakly real irreducible representation of a classical
group. Suppose that some Xρi(π) is a non-unitarizable subquotient of θ1 × · · · ×
θk o σ, where θi ∈ C and

k ≤ 2.

Then, π is not unitarizable.

Proof. Suppose on the contrary that π is unitarizable. Denote ρi simply by
ρ and let Xc

ρ = C \Xρ. We also denote α = αρ,σ. Now Xρ(π) is a subquotient of

[x1](ρ) × · · · × [xk](ρ) o σ,

where xi ≥ 0 and k ≤ 2. Denote πρ = Xρ(π) and πcρ = Xc
ρ(π). Clearly

π = ΨXρ,Xcρ(πρ, π
c
ρ).

If k = 1, then non-unitarizability of πρ implies πρ ∼= [x1](ρ) o σ where x1 > α.
Now Lemma 9.1 implies

π ∼= [x1](ρ) o πcρ.

This cannot be unitarizable, since we can deform x1 to the right as far as we want.
We get a contradiction (with the fact that unitarizability can show up only in
bounded domains – see [51] for more details).

Consider now the case k = 2. We shall suppose as usually 0 ≤ x1 ≤ x2. Recall
that πρ is a subquotient of

[x1](ρ) × [x2](ρ) o σ.

We consider several cases. The first is

α = 0.

The non-unitarizability of πρ implies that x1 + x2 > 1. This implies πρ ∼= [x1](ρ) ×
[x2](ρ) o σ. Now Lemma 9.1 implies

π ∼= [x1](ρ) × [x2](ρ) o πcρ.

Further, we can deform x1 to x2, use the unitary parabolic reduction and get a
contradiction with the unitarizability in the case of general linear groups (more
precisely, with the existence of the complementary series there).

It remains to consider the case

α > 0.

First recall that Theorem 1.2 of [70] implies that

(9.2) ΨXρ,Xcρ
(τ, πcρ) is not unitarizable

for any non-unitarizable irreducible subquotient τ of [α](ρ)×[α+1](ρ)oσ. Therefore,
we assume

(x1, x2) 6= (α, α+ 1)
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in the sequel.
Consider first the case

α = 1
2 .

Since πρ is not unitarizable, we have x1 >
1
2 or x2 >

1
2 .

Suppose xi 6= 1
2 for i = 1, 2.

Assume first that x2 ± x1 6= 1. Then, π ∼= [x1](ρ) × [x2](ρ) o σ. Now Lemma
9.1 implies

π ∼= [x1](ρ) × [x2](ρ) o πcρ.

If x1 >
1
2 , then we can deform x1 to x2, switch one x2 to −x2, use the unitary

parabolic reduction and get a contradiction (with existence of complementary series
for general linear group), which implies that π cannot be unitarizable.

If x1 <
1
2 , then we can deform x2 to get x2+εx1 = 1 for some ε ∈ {±1}, and take

there an irreducible subquotient denoted again by π (which must be unitarizable).
Now πρ ∼= τ o σ for some irreducible subquotient of the reducible representation

[εx1](ρ1) × [x2](ρ1). Lemma 9.1 implies

π ∼= τ o πcρ.

Now we can deform τ to exponents ( 1
2 ,

3
2 ). The properties of the Jantzen decom-

position and (9.2) imply that π is not unitarizable (since in the limit we have a
non-unitarizable subquotient).

Assume now that x2 + εx1 = 1 for some ε ∈ {±1}. Then, in the same way as
above we get

π ∼= τ o πcρ

for some irreducible subquotient of the reducible representation [εx1](ρ) × [x2](ρ).
Now we finish this case as the previous one.

It remains to consider the case x1 = 1
2 . Then, πρ ∼= [x2](ρ) o θ where θ is an

irreducible subquotient of [ 1
2 ](ρ2) o σ (recall x2 6= 3

2 ). Lemma 9.1 implies

π ∼= [x2](ρ) o ΨXρ,Xcρ
(θ, πcρ).

We now deform x2 to 3
2 , and in a similar way as before, we get a contradiction.

It remains to consider the case

α ≥ 1.

First assume

x2 > α.

We know from Proposition 2.2 of [52] that x1 ≤ α and x2 − x1 ≤ 1, which implies
x2 ≤ α + 1. Therefore, if x2 = α + 1, then x1 = α. Then, we know that π is not
unitarizable by (9.2). It remains to consider the case

x2 < α+ 1.

Let

x2 > α.

Consider first the case x1 = α. Then, πρ = [x2](ρ) o θ where θ is δ([α](ρ);σ) or

L([α](ρ);σ). One directly gets that

π ∼= [x2](ρ) o ΨXρ,Xcρ
(θ, πcρ).

We now deform x2 to α+ 1, and in a similar way as before, we get a contradiction.
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Therefore, we need to consider the case

x1 < α.

Assume first that x2 − x1 = 1. Then, a short analysis using Lemma 9.1 im-
plies that π ∼= τ o πcρ, where τ is an irreducible subquotient of [x1](ρ1) × [x2](ρ2).
Now deforming τ to exponents α, α + 1 and using the properties of the Jantzen
decomposition, we would get a contradiction.

If x2 − x1 < 1, then similarly we get π ∼= [x1](ρ1) × [x2](ρ2) o πcρ. We can now
deform (increase) x2 to the previous case, consider a limit, and repeat the above
argument. Therefore, we get again a contradiction.

Consider now the case
x2 = α.

We need to consider the case α− 1 < x1 ≤ α. Then, we know that πρ ∼= [x1](ρ) o θ

for some irreducible subquotient θ of [α](ρ) o σ, which implies by Lemma 9.1

π ∼= [x1](ρ) o ΨXρ,Xcρ
(θ, πcρ).

Now we can deform x1 to α+ 1, and get a contradiction in the same way as in the
previous cases (here we use that [α] o L([α];σ) and [α] o δ([α];σ) are irreducible,
and properties of the Jantzen decomposition).

It remains to consider the case

x2 < α

and the region
1− x1 < x2 < x1 + 1.

Then, representations π ∼= [x1](ρ) × [x2](ρ) o πcρ, and moreover, for the exponents

satisfying above relations, [x1](ρ)×[x2](ρ)oπcρ form a continuous family of irreducible

hermitian representations. Consider the point 1
2 < x1 = x2 < α of the above

region. After switching x1 to −x1, the unitary parabolic reduction implies that this
representation is not unitarizable (since [x1]× [−x1] is not unitarizable). Therefore,
the whole family is non-unitarizable. This completes the proof of the lemma �

We infer

Corollary 9.4. Let π be a weakly real irreducible subquotient of θ1×· · ·×θkoσ,
where θi ∈ C, k ≤ 3. Then, π is unitarizable if and only if all Xρi(π) in the Jantzen
decomposition of π are unitarizable. �

Having in mind the results of [30], [42], [70] and the present paper, we conjec-
ture that the above corollary holds for any k, namely

Conjecture 9.5. Jantzen decomposition preserves unitarizability in both di-
rections.





APPENDIX A

The Arthur Packet of L(ναρ, να−1ρ; δ(ναρ;σ))
by Colette Mœglin

A.1. The representations

Let σ be an irreducible cuspidal representation of a classical groups G = G(F )
and let ρ be an irreducible unitarizable cuspidal representation of a GL(d, F ). Let
α ∈ 1

2Z be strictly greater then 1. Suppose that ναρ o σ is reducible. Denote by
δ(ναρ;σ) the unique irreducible square-integrable subquotient of the last represen-
tation.

The induced representation

ναρ× να−1ρo δ(ναρ;σ)

has a unique irreducible quotient which will be denoted by π (this is the Langlands
quotient).

A.2. The parameters

Denote by φ the Langlands parameter of σ. This parameter is an admissible
homomorphism of WF × SL(2,C) into LG. We denote also by ρ the morphism of
WF into GL(d,C) which parameterizes the cuspidal representation ρ.

The assumption on α regarding the reducibility implies that there exists an
admissible homomorphism φ− for a classical group of smaller rank than G, which
is discrete and for which holds

φ = φ− ⊕ ρ⊗R[2α− 3] ⊕ ρ⊗R[2α− 1],

where R[n] denotes the irreducible n-dimensional algebraic representation of the
group SL(2,C). For this it is necessary that 2α− 3 ≥ 0, i.e. α ≥ 3

2 . If α = 3
2 , there

one does not need to write the term ρ⊗R[2α− 3].
Moreover φ− is non-trivial if G is quasi-split, but this is not used in the sequel.
One defines now the Arthur parameter ψ. It is the following morphism of

WF × SL(2,C)× SL(2,C) into LG:

ψ := φ− ⊗R[1] ⊕ ρ⊗R[2α+ 1]⊗R[1] ⊕ ρ⊗R[1]⊗R[2α+ 1].

A.3. The result

Claim: The representation π is in the Arthur packet associated to ψ.
Denote by ψ+ the morphism where one changes a dimension 2α+1 into 2α+3.

We have two possibilities and we make the choice that suits us for the proof (the
result is obviously independent of the choice) That is:

ψ+ := φ− ⊗R[1] ⊕ ρ⊗R[2α+ 3]⊗R[1] ⊕ ρ⊗R[1]⊗R[2α+ 1].
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From the section 3.1.2 of [38], we know that the representations of the packet
associated with ψ are obtained from those associated with ψ+ as follows:

Let τ+ be a representation in the packet parameterized by ψ+. Then the
term Jacνα+1ρ(τ+) is either zero or an irreducible representation. In the second
case, this irreducible representation is in the packet associated with ψ and all the
representations of the packet associated with ψ are obtained in this way and for a
unique choice of τ+.

We will construct in the packet associated with ψ+, a representation denoted
π+ which will give π by the procedure above.

Indeed, according to the construction in the section 3.1.1 in [38] (which is a
summary of [37] for the case which matter here of `(ψ) = 0), the packet associ-
ated with ψ+ contains the representations of the packet obtained as the unique
irreducible sub-representations of the induced representations

ν−αρ× ν−α−1ρo τ−,

where τ− runs over the representations of the packet

ψ− := φ− ⊗R[1] ⊕ ρ⊗R[2α+ 3]⊗R[1] ⊕ ρ⊗R[1]⊗R[2α− 3].

This even describes all representations of the packet associated with ψ+ if 2α−3 > 0,
and some are missing if 2α− 3 = 0, but it does not matter to us.

According to the same reference, the packet associated with ψ− is formed of
the irreducible subrepresentations of the induced representations

να+1ρo τ ′,

where τ ′ runs over the representations of the packet

ψ′ := φ− ⊗R[1] ⊕ ρ⊗R[2α+ 1]⊗R[1] ⊕ ρ⊗R[1]⊗R[2α− 3].

This packet contains the representation δ(ναρ;σ), the point is somewhat subtle:
the representations of the packet ψ′ are the unique irreducible subrepresentations
of the induced representation ναρo τ ′′ with τ ′′ in the packet associated to

φ− ⊗R[1] ⊕ ρ⊗R[2α− 1]⊗R[1] ⊕ ρ⊗R[1]⊗R[2α− 3].

But this package contains the cuspidal representation σ, hence the assertion.
We have thus constructed a representation π+ which is an irreducible sub rep-

resentation of the induced representation:

ν−αρ× ν−α+1ρ× να+1ρo δ(ναρ;σ).

We can exchange να+1ρ and ν−αρ × ν−α+1ρ (i.e. commute), so Jacνα+1ρ(π+) is
non-zero and actually is a submodule of the induced representation

ν−αρ× ν−α+1ρo δ(ναρ;σ).

Since this induced representation has only one irreducible sub representation, which
is π, and one knows a priori that the representation Jacνα+1ρ(π+) is irreducible, we
identify this Jacquet module with π. We have thus shown that π is in the packet
associated with ψ.



APPENDIX B

Jacquet Module of L(ναρ, να−1ρ; δ(ναρ;σ))

As in the body of the paper, let ρ be a F ′/F -self-contragredient irreducible cus-
pidal representation of a general linear group (which we denote here by GL(nρ, F

′))
and σ an irreducible cuspidal representation of a classical group. We assume that
α = αρ,σ ≥ 3

2 . In this appendix we calculate the Jacquet modules of the distin-
guished representation

π0 = L(ναρ, να−1ρ; δ(ναρ;σ)).

Although the result is not used in the body of the paper, we opted to include this
computation as it might be useful in the future. For simplicity, we suppress ρ from
the notation. Thus,

π0 = L([α], [α− 1]; δ([α];σ)).

The aim of this appendix is to prove the following

Proposition B.1. We have

µ∗(L([α], [α− 1]; δ([α];σ))) = 1⊗ L([α], [α− 1]; δ([α];σ))

+[−α]⊗ L([α− 1]; δ([α];σ)) + [α]⊗ L([α− 1], [α];σ)+

[−α]× [α]⊗ [α− 1] o σ + L([−α], [−α+ 1])⊗ δ([α];σ) + δ([α− 1, α])⊗ L([α];σ)

+L([−α], [−α+ 1])× [α]⊗ σ + [−α]× δ([α− 1, α])⊗ σ.
Proof. From (4.13), we know that

π := [α] o L([α− 1]; δ([α];σ))

is reducible. Furthermore we know that π0 is a subquotient. We have

µ∗(π) = (1⊗ [α] + [α]⊗ 1 + [−α]⊗ 1)o(
1⊗ L([α− 1]; δ([α];σ))

+[α]⊗ [α− 1] o σ + [−α+ 1]⊗ δ([α];σ)

+[−α+ 1]× [α]⊗ σ + δ([α− 1, α])⊗ σ
)

which (after multiplication) we write as

1⊗ π +

[α]⊗ L([α− 1]; δ([α];σ)) + [−α]⊗ L([α− 1]; δ([α];σ))

+[α]⊗ [α]× [α− 1] o σ + [−α+ 1]⊗ [α] o δ([α];σ)+

[α]× [α]⊗ [α− 1] o σ + [α]× [−α+ 1]⊗ δ([α];σ)

+[−α]× [α]⊗ [α− 1] o σ + [−α]× [−α+ 1]⊗ δ([α];σ)

+[−α+ 1]× [α]⊗ [α] o σ + δ([α− 1, α])⊗ [α] o σ+
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[α]× [−α+ 1]× [α]⊗ σ + [α]× δ([α− 1, α])⊗ σ
[−α]× [−α+ 1]× [α]⊗ σ + [−α]× δ([α− 1, α])⊗ σ

or (after decomposing into irreducible representations) as

1⊗ π +

2 · [α]⊗ L([α− 1]; δ([α];σ)) +

ω̂1︷ ︸︸ ︷
[−α]⊗ L([α− 1]; δ([α];σ)) +[α]⊗ L([α− 1, α];σ)+

[α]⊗ L([α− 1], [α];σ) + [α]⊗ δs.p.([α− 1], [α];σ) +

ω2︷ ︸︸ ︷
[−α+ 1]⊗ [α] o δ([α];σ) +

ω′2︷ ︸︸ ︷
[α]× [α]⊗ [α− 1] o σ+[α]× [−α+ 1]⊗ δ([α];σ) + [−α]× [α]⊗ [α− 1] o σ+

L([−α], [−α+ 1])⊗ δ([α];σ) + δ([−α,−α+ 1])⊗ δ([α];σ)+

[−α+ 1]× [α]⊗ δ([α];σ) + [−α+ 1]× [α]⊗ L([α];σ)+

δ([α− 1, α])⊗ δ([α];σ) + δ([α− 1, α])⊗ L([α];σ)+

ω1︷ ︸︸ ︷
[α]× [−α+ 1]× [α]⊗ σ+

ω′3︷ ︸︸ ︷
[α]× δ([α− 1, α])⊗ σ+

ω3︷ ︸︸ ︷
δ([−α,−α+ 1])× [α]⊗ σ+

ω̂2︷ ︸︸ ︷
L([−α], [−α+ 1])× [α]⊗ σ+

ω̂′2︷ ︸︸ ︷
[−α]× δ([α− 1, α])⊗ σ .

Let γ be the irreducible subquotient of π such that sGL(γ) ≥ ω1. Transitivity
of Jacquet modules implies that s(nρ)(γ) contains an irreducible term of the form
[−α + 1]⊗−. However, by the above formula, the only irreducible subquotient of
s(nρ)(π) of this form is ω2. Therefore, ω2 ≤ µ∗(γ). Similarly, considering s(2nρ)(π)
and terms of form [α]× [α]⊗−, we conclude that ω′2 ≤ µ∗(γ). This and transitivity
of Jacquet modules implies that in the Jacquet module of γ we have [−α + 1] ⊗
[−α]⊗ [α]⊗ σ. Again, transitivity of Jacquet modules implies that there exists an
irreducible subquotient of s(3nρ)(π) which has [−α+1]⊗[−α]⊗[α]⊗σ in its Jacquet
module. The above formula implies that the only possibility for such subquotient
is ω3. Therefore, ω3 ≤ µ∗(γ). Similarly, ω′2 ≤ µ∗(γ) implies ω′3 ≤ µ∗(γ) (ω′3 is
the only term in s(3nρ)(π) with all the exponents in the cuspidal support positive).
Therefore ω1 + ω3 + ω′3 ≤ s(3nρ)(γ).

Let now γ̂ be the irreducible subquotient of π such that µ∗(γ̂) ≥ ω̂1. The
formula for s(nρ)(π) implies that ω1 is a direct summand (consider infinitesimal
character in the sense of Bernstein center). Therefore, it is also a direct summand
in the Jacquet module s(nρ)(γ̂). Frobenius reciprocity now implies that γ̂ embeds
into [−α] o L([α− 1]; δ([α];σ)), which implies γ̂ = π0.

From 3.4.3 we see that s(2nρ)(L([α− 1]; δ([α];σ))) = [−α+ 1]× [α]⊗σ+ δ([α−
1, α])⊗ σ. This implies that [−α]⊗ [−α+ 1]⊗ [α]⊗ σ and [−α]⊗ [α]⊗ [α− 1]⊗ σ
are in the Jacquet module of π0. The only two irreducible pieces of s(3nρ)(π)
having these terms in their Jacquet modules are ω̂2 and ω̂′2 respectively. Thus,
ω2 + ω′2 ≤ s(3nρ)(π0). Now the fact that s(3nρ)(π) = ω1 + ω3 + ω′3 + ω̂2 + ω̂′2 and
the two above inequalities that we have proved for s(3nρ)(γ) and s(3nρ)(π0) imply
that π = γ + π0 and

s(3nρ)(π0) = ω̂2 + ω̂′2.
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This implies that the semi-simplification of the minimal non-trivial Jacquet modules
of π0 is

[α]⊗ [α− 1]⊗ [−α]⊗ σ + [α]⊗ [−α]⊗ [α− 1]⊗ σ + [α]⊗ [−α]⊗ [−α+ 1]⊗ σ+

[−α]⊗ [α]⊗ [α− 1]⊗ σ + [−α]⊗ [α]⊗ [−α+ 1]⊗ σ + [−α]⊗ [−α+ 1]⊗ [α]⊗ σ.
We get s(2nρ)(π0) ≥ [−α]× [α]⊗ [α− 1]o σ+L([−α], [−α+ 1])⊗ δ([α];σ) + δ([α−
1, α])⊗ L([α];σ) directly from the above formula. The fact that the minimal non-
trivial Jacquet module of the right hand side has length 6 implies that the above
inequality is actually equality, and therefore we have computed that s(2nρ)(π0) =

[−α]× [α]⊗ [α− 1] o σ + L([−α], [−α+ 1])⊗ δ([α];σ) + δ([α− 1, α])⊗ L([α];σ).

We know s(nρ)(π0) ≥ ω̂1. From the formula for s(2nρ)(L([α−1], [α];σ)) in 3.4.3,
we get s(nρ)(π0) ≥ [α] ⊗ L([α − 1], [α];σ) (the representation [α − 1] × [α] o σ is
regular). Now the inequality s(nρ)(π0) ≥ ω̂1 + [α] ⊗ L([α − 1], [α];σ) that we have
got, is actually the equality

s(nρ)(π0) = ω̂1 + [α]⊗ L([α− 1], [α];σ)

since the minimal non-trivial Jacquet module of the right hand side has length 6.
This completes a proof of the proposition. �
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[26] Takuya Konno. A note on the Langlands classification and irreducibility of induced represen-
tations of p-adic groups. Kyushu J. Math., 57(2):383–409, 2003.

[27] Arno Kret and Erez Lapid. Jacquet modules of ladder representations. C. R. Math. Acad.
Sci. Paris, 350(21-22):937–940, 2012.

[28] Stephen S. Kudla. Notes on the local theta correspondence. Unpublished Notes.

[29] Erez Lapid and Alberto Mı́nguez. On parabolic induction on inner forms of the general linear
group over a non-archimedean local field. Selecta Math. (N.S.), 22(4):2347–2400, 2016.
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Paris Sér. A-B, 283(7):Ai, A429–A431, 1976.

[45] François Rodier. Représentations de GL(n, k) où k est un corps p-adique. In Bourbaki Sem-
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